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101. Energy conservation by feedback (based on exam in 035018, 22.5.2019), (p.350). People change
their energy consumption in response to feedback about their prior energy use. Define:

n(c)dc = number of consumers whose prior energy consumption was in the interval [c, c+dc].

The estimated consumption in the next time interval, for a consumer whose prior consumption
was in the interval [c, c+dc], is denoted f̃ (c, ρ), where ρ is a parameter expressing the intensity
of the feedback; greater ρ implies greater intensity.

The true consumption function is f (c, ρ), whose uncertainty is represented by an info-gap
model, U (h). The response of the entire population to feedback at intensity ρ is:

R(ρ, f ) =
∫ ∞

0
f (c, ρ)n(c)dc (505)

We require that the population response be no greater than the critical value, Rc:

R(ρ, f ) ≤ Rc (506)

(a) Derive an explicit algebraic expression for the robustness function for the following fractional-
error info-gap model:

U (h) =
{

f (c, ρ) : f (c, ρ) ≥ 0,

∣∣∣∣∣
f (c, ρ)− f̃ (c, ρ)

f̃ (c, ρ)

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (507)

(b) Derive an explicit algebraic expression for the robustness function for the following fractional-
error info-gap model:

U (h) =
{

f (c, ρ) : f (c, ρ) ≥ 0,

∣∣∣∣∣
f (c, ρ)− f̃ (c, ρ)

w

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (508)

where w is a known positive constant.
(c) Continuing from part 101b, consider two different situations, (ρ1, w1) and (ρ2, w2), where:

ρ2 < ρ1 and 0 < w2 < w1 (509)

That is, the feedback in situation 1 is more intensive, but the uncertainty in this situation
is greater. For what values of Rc is situation 2 robust-preferred? Assume that f̃ (c, ρ) =

(1− ρ)c.
(d) For a particular info-gap model, the robustness function takes this form:

ĥ(Rc, ρ) = (Rc − w)ρ (510)

or zero if this is negative, where ρ and w are positive constants. Consider two different
situations, (ρ1, w1) and (ρ2, w2), where:

0 < ρ2 < ρ1 and 0 < w2 < w1 (511)

For what values of Rc is situation 1 robust-preferred?
(e) The true and estimated consumption functions are related as:

f (c, ρ) = f̃ (c, ρ) +
J

∑
j=1

aj sin
jπc
cmax

(512)

= f̃ (c, ρ) + aTσ(c) (513)
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where cmax is a known positive number, and a and σ(c) are the vectors of Fourier coef-
ficients and sine functions in eq.(512). The uncertainty in f (c, ρ) is represented by this
Fourier-ellipsoid info-gap model:

U (h) =
{

f (c, ρ) = f̃ (c, ρ) + aTσ(c) : aTWa ≤ h2
}

, h ≥ 0 (514)

where W is a known, positive definite, real, symmetric matrix. Derive an explicit algebraic
expression for the robustness function.
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Solution for problem 101. Energy conservation by feedback. (p.123).
101a. The definition of the robustness function is:

ĥ(Rc, ρ) = max
{

h :
(

max
f (c,ρ)∈U (h)

R(ρ, f )
)
≤ Rc

}
(2270)

Let m(h) denote the inner maximum. Because n(c) is non-negative, the inner maximum occurs for
f = (1 + h) f̃ . Thus:

m(h) =
∫ ∞

0
(1 + h) f̃ (c, ρ)n(c)dc = (1 + h)R̃ ≤ Rc (2271)

where R̃ is defined implicitly in eq.(2271). Hence:

ĥ(Rc, ρ) =
Rc

R̃
− 1 (2272)

or zero if this is negative.
101b. The inner maximum in the robustness, eq.(2270) is:

m(h) =
∫ ∞

0

(
f̃ (c, ρ) + wh

)
n(c)dc = R̃ + wh

∫ ∞

0
n(c)dc

︸ ︷︷ ︸
N

≤ Rc (2273)

where N is the total number of consumers. Hence:

ĥ(Rc, ρ) =
Rc − R̃

wN
(2274)

or zero if this is negative.
101c. The robustness curves for the two situations cross at a positive value of Rc, call it R×.

Situation 2 is robust-preferred for Rc values greater than R× because w2 < w1, which implies that
situation 2’s robustness curve is steeper. We obtain an explicit expression for R× as follows. First
note that:

R̃ = (1− ρ)
∫ ∞

0
cn(c)dc = (1− ρ)R0 (2275)

which defines the term R0. Thus the robustness function in eq.(2274) is:

ĥ(Rc, ρ) =
Rc − (1− ρ)R0

wN
(2276)

Now:

ĥ1(R×) = ĥ2(R×) (2277)

=⇒ R× − (1− ρ1)R0

w1N
=

R× − (1− ρ2)R0

w2N
(2278)

=⇒
(

1
w1
− 1

w2

)
R× =

(
1− ρ1

w1
− 1− ρ2

w2

)
R0 (2279)

=⇒ R× =
(1− ρ1)w2 − (1− ρ2)w1

w2 − w1
R0 (2280)

We prefer situation 2 for Rc > R×.
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101d. The robustness curves for the two situations cross at a positive value of Rc, call it R×.
Situation 1 is robust-preferred for Rc values greater than R× because ρ2 < ρ1, which implies that
situation 1’s robustness curve is steeper. We obtain an explicit expression for R× as follows.

ĥ1(R×) = ĥ2(R×) (2281)

=⇒ (R× − w1)ρ1 = (R× − w2)ρ2 (2282)

=⇒ (ρ1 − ρ2)R× = w1ρ1 − w2ρ2 (2283)

=⇒ R× =
w1ρ1 − w2ρ2

ρ1 − ρ2
(2284)

which is a positive value. We prefer situation 1 for Rc > R×.
101e. The total population response, R(ρ, f ), can be written:

R(ρ, f ) =
∫ ∞

0
f (c, ρ)n(c)dc =

∫ ∞

0
f̃ (c, ρ)n(c)dc + aT

∫ ∞

0
σ(c)n(c)dc

︸ ︷︷ ︸
z

= R̃ + aTz (2285)

We use Lagrange optimization to find the extreme value for R on the info-gap model at horizon of
uncertainty h. Define:

H = R̃ + aTz + λ
(

h2 − aTWa
)

(2286)

Extrema occur for:
0 =

dH
da

= z− 2λWa =⇒ a =
1

2λ
W−1z (2287)

Using the constraint to solve for the Lagrange multiplier:

h2 =
1

4λ2 zTW−1WW−1z =⇒ 1
2λ

= ± h√
zTW−1z

(2288)

Thus the inner maximum in the definition of the robustness function is:

m(h) = R̃ +
h√

zTW−1z
zTW−1z = R̃ + h

√
zTW−1z ≤ Rc (2289)

Solving for h at equality yields the robustness function:

ĥ =
Rc − R̃√
zTW−1z

(2290)

or zero if this is negative.


