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1 Design of a Vibrating Cantilever

1.1 Design Problem

9 We now consider an example:
Vibration control in a cantilever subject to uncertain dynamic excitation.

9 The cantilever: rigid beam which is clamped at one end.
See transparency of: e Galileo’s cantilever.
¢ Atomic force microscope.

9 The cantilever is the paradigm for:
e Tall building.
e Radio tower.
e Crane (agoran).
e Airplane wing.
e Turbine blade.
¢ Diving board.
e Canon barrel.
e Atomic force microscope.
e etc.

9 Central goal in design of the cantilever:
Control of vibration resulting from external loads.

9 Two basic approaches:
1. Prevent vibration by stiffening the beam.
2. Absorb vibration by dissipating energy.

9 These design concepts are not mutually exclusive.
They can be implemented together.
9 These design concepts are relevant in different circumstances as we will see.

Yakov Ben-Haim, Info-Gap Decision Theory, 2nd ed., section 3.3.1. See also lecture notes ro02.tex, section 6.
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1.2 Robusthess Function

9 We will use the robustness function to evaluate the design options.
9 Later we will consider the opportuneness function.

9 As usual, the three components of the analysis are:
1. System model.
2. Failure (or performance) criterion.
3. Uncertainty model.

9 We use a simple system model:
Rigid vibration around the clamped base.
6(t) = angle of deflection of beam [radian].
u(t) = moment of force at base, [Nm].
Equation of motion:

d?0(t)  do(t)
a2
J = moment of inertia of beam wrt rotation at base, fOL m(z)z? dz.

¢ = damping coefficient.
k = rotational stiffness coefficient, [Nm/radian].

J + kO = u(t)

9 Solution of eq. of motion, for:
e Zero initial conditions, #(0) = 6(0) = 0
e Subcritical damping, ¢? < 1:

f(t) = impulse response function:

w? = k/J = squared natural frequency.
¢ = 57, = dimensionless damping coefficient.
wq = wy/1 — ¢? = damped natural frequency.

12/4
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9 We now consider the uncertainty model.
What we know about the load is:
e The nominal load, u(t).
e The actual loads are transient:
o May vary rapidly,
o May attain large deviations from the nominal load.
o No sustained deviation from the nominal load

We will model load uncertainty with the cumulative energy bound info-gap model:

U(h, i) = {u(t) : / fu(t) — (0] dt < h?}, h>0 (4)
0
9 The performance criterion: Deflection must not exceed critical value:
10(t)] < 6 (5)
In terms of reward functions, define:
R(q,u) = [6(t)] (6)

u = uncertain load.
q = design concept, as expressed in damping ¢ and stiffness k.

9 The robustness function can be defined as:

E(q,ec)zmax{h: ( max |9u(t)\> gec} 7)

welU (h,u)

~

h(q,8.) is the maximum tolerable info-gap.

9 We now evaluate:

max_ [0y (1)] (8)
ueU (h,u)

9 Note that 6,,(¢) in eq.(2) on p.4 can be re-written:
0lt) = [ s ryar 9)
- /t (u(r) — a(r)] f(t —7)dr + /t AV f(t—7)dr (10)
0 0

0(t)

where 6(t) = nominal deflection.

We need the Schwarz inequality:

2 .
( / bf(t)g(t) dt) < / bf(t)th / bg<t>2dt (11)
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with equality iff:
f(t) = cg(t) (12)

for any non-zero constant c.

Now notice that the first integral in eq.(10) on p.5 is bounded:

([ a1 s0-mar) < ([n-awpar) ([ Fo-na) o9
! I

9 Note:
¢ From the info-gap model we know that: Integral | < h2.
e Integral Il is known.
e The info-gap model allows us to choose u(7) such that:

u(r) —u(r) o< f(t—7) (14)

e Thus, from egs.(10) and (13):

t ) ~
e [0u(0)] = i/ [ 72 d [0 (15)

9 We can now express the robustness function:
e Equate max |6,(t)| to b..
e Solve for , yielding h:

h,//tf2(7)d7+'§(t)]zec = E(q,ac)zec_’g(t)’ (16)
0 Vo A7) dr

unless this is negative, in which case h = 0.
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1.3 Numerical Example

9 We will consider a specific example. Nominal input w(t) is square:

_ o, 0<t<T
u(t) = { 0, t>T (17)
The nominal response can be calculated:
0, (1 - C2)ao
= (~ = — 1
0t) = 05(1) = = =1) (18)

where ~(t) is a known function.
For notational convenience we represent integral Il in eq.(13) on p.6 as:

t 1— C2
| P -nar=——e (19)
0 2Jwy
where ¢(t) is a known function.
Now the robustness function can be expressed:
~ 2J0.w?\fog — 2+/wq|toy(t
h(g,0.) = VWd — 2y/wd oy ()] (20)
wo(t)

Recall: ¢ = decision vector = (¢, k), which is embedded in w and wy.

Robustness
A
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Time, ¢ [s]

Figure 1: Robustness versus time for three values of the natural frequency w = 1, 3 and 4 (bottom
to top). Negligible damping: ¢ = 0.01. 1 = J6. = up. T = 5.

q h(q,6.) vs. t is plotted in fig. 1
For various natural frequencies: w = 1, 3 and 4 (bottom to top).
With negligible damping: ¢ = 0.01.

« 1, oscillates but tends to decrease over time.
e At low stiffness (w = 1) the robustness periodically vanishes.
¢ At moderate and high stiffness (w = 3, 4)
1 oscillates but does not reach zero for the duration shown.
e The transition from rapid to slow decrease in D
occurs about at t = T' (end of nominal input).
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Robustness
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Figure 2: Robustness versus time for three values of the damping ratio ¢ = 0.03, 0.3, 0.5 (bottom to
top). Fixed natural frequency w =1. 1 = Jb0. = ug. T = 5.

9 Now consider fig. 2, which shows
h(q,0¢) vs. t for various damping ratios:
¢=0.03,0.3and 0.5

at low stiffness: w = 1.

e Lowest curve is quite similar to lowest curve in fig. 1.
¢ With large damping (¢ = 0.3 or 0.5):

hissmallfort <T

h is large and nearly constant thereafter.

9 Comparing figs. 1 and 2:
¢ Fig. 1 is based on the “stiffness” design concept, with negligible damping.
¢ Fig. 2 is based on the “dissipation” design concept, with negligible stiffness.
e The choice of a design concept depends on the time frame of interest:
ot < T calls for “stiffness” design.
ot > T calls for “dissipation” design.
ot > 0 calls for combined “stiffness” and “dissipation” design.
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1.4 Opportuneness Function

9 We now consider the opportuneness function.
Windfall reward: angular deflection 6, much less (much better) than the survival requirement,
0.:
by < 6 < 6, (21)

9 Immunity to windfall, B(q, 0w ): the least info-gap at which windfall is possible.
9 Analogous to eq.(7) on p. 5:

B(gq,0w) = min {h © min_ |0,(0)] < ew} (22)
u€U(h,u)

¢ Smaller is better for 3. Unlike A, for which bigger is better.

9 Proceeding as in eqg.(15) on p. 6 we find:

t ~
min_ [0, (t)| = —hy [ / f2(r)dr + [6(t)| (23)
uwel (h,u) 0

Equating this to 6., and solving for h yields the opportuneness function, as in eq.(16) on p. 6:

—h,//t fr)dr+ 00| =0 = Blg,0n) = Lol (24)
0 J3 f2(r)dr

unless this is negative, in which case B =0.

Why does /3 = 0 in this case?

B < 0onlyif |0(t)] < by

This means that the nominal response |(t)|

is less than the windfall response 6.

Hence windfall is possible even without uncertainty: The immunity to windfall is zero.
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¢ Compare 3(q, b, to the robustness in eq.(16) on p. 6:
0 — \é(t))
Jo F2(7)dr

We see that the immunity functions are related as:

~

h(Qa 00) =

= ~ 0. — 0w
Bla, 0u) = ~h(g,0) +
Ji 2(r) dr

9 We now consider antagonism and sympathy of the immunity functions.

€ The immunity functions 3(g¢, 6) and h(q, 6.) are
sympathetic if they can be improved simultaneously.
They are antagonistic if either can be improved only at the expense of the other.

9 For example, we can vary w. The immunity functions are antagonistic if:

ah(qa GC) > 0 and 85(q7 9W) > 0
Ow Ow
— —
improving with o degenerating with
or if: R R
Oh(a.00) _ o g PPaty)
Ow Ow
—— —
degenerating with improving with
9 On the other hand, the immunity functions are sympathetic if:
Oh(a,9) _ o g P00 _
Ow Odw
— —
improving with o improving with «
or if: R R
.0 _ o ang  OB@bw)
Ow Ow
—_— —_—
degenerating with « degenerating with o

9 In short, the immunity functions are sympathetic wrt w if and only if:

Oh(q,0¢) 9B (q, O)
ow ow

<0
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9 Return to eq.(26) on p. 10.
e Question: Under what conditions will 7 and 3 always be sympathetic?
e Answer: If and only if their optima coincide. See fig. 3.

Robustness or
Opportuneness

®)

~ Design, ¢

Figure 3: Sympathetic robustness and opportuneness curves.

9 When will this occur? Iff R R
98 _ 0o
dqg Oq
From eq.(26) we see that this will happen only if, at the same ¢, we also have:

0

oD
g 0

where we define:
O, — Oy

Vo F2(r)dr

“Usually” this will not happen, which means that, instead of fig. 3, we will have fig. 4.

D=

Robustness or
Opportuneness

)

Q
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~ Design, ¢
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Figure 4: Robustness and opportuneness curves which are both sympathetic and antagonistic.
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