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1 Highlights

§ Info-Gap Robustness Analysis of:
e Random Loads on a Beam.
e Random Events and Failure.
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2 Random Load on a Cantilever: Info-Gap Robustness Analysis

L >
\fi
F
2.1 Problem Statement
¢ Rigid beam.
e ' = load at free end at angle ¢.
e k = rotational stiffness at base.
e § = angular rotation of beam:
- Fsing¢
ok
¢ Design requirement:
0] < 6.

e Problem: Load uncertain, F.

2.2 Uniform-Bound Info-Gap Model

¢ We know:
e I’ is nominally zero.
e I’ may deviate greatly from zero.

§ We do not know:
e Maximum deviation from zero.
¢ Probability distribution of F.

¢ Info-gap model of uncertainty in F":
Uh)={F: |F|<h}, h>0

Two levels of uncertainty:
o F unknown.
o Horizon of uncertainty, h, unknown.

¢ Derive the robustness by combining:
e System model: eq.(1).
e Performance requirement: eq.(2).
e Uncertainty model: eq.(3).

h(6.) = max {h : (Frgg()i) ]0|> < GC} (4)
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§ Solution method. Start from the inside:
Let m(h) denote the inner maximum in eq.(4) that occurs for F' = +h:

h sin ¢ ~ k0.
< :> =
k ' < 0 h(0e) sin ¢

m(h) = '

§ Two properties of all info-gap robustness functions, E(QC):

¢ Trade off: Better performance (smaller 6.) has worse robustness (lower E).

e Zeroing: Predicted performance (no rotation) has zero robustness.

§ Inverse of robustness: m(h) is the inverse function of R(6e):
m(h) =6, ifandonlyif h(6.) =h

Hence: plot of m(h) vs h is the same as plot of 6. vs R(6s).

2.3 Fractional-Error Info-Gap Model

¢ Different information, different robustness.

¢ We know:
e I nominally equals F', a known positive value.
e I may deviate greatly from F.
e k nominally equals k, a known positive value.
e k. may deviate greatly from k.
e k is non-negative.

§ We do not know:
e Maximum fractional deviation of F from F, or of k from k.
¢ Probability distribution of F' or of k.

¢ Info-gap model of uncertainty in F' and &:

F-F
WMZ{Rkw =

<h, k>0,

§ Derive the robustness by combining:
e System model: eq.(1), p.4: 0 = (F'sin¢)/k.
e Performance requirement: eq.(2), p.4: 6] < ..
e Uncertainty model: eq.(7).

h(6.) = max{h : ( max \9[) < GC}
FkeU(h)

¢ Solution method: start with the inner maximum of eq.(8).
The inner maximum, m(h), occurs at:

F=(1+hF, k=max[0, (1—h)k]
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Thus, for h < 1:

(14 h)Fsin¢ <

mih) = (1— )k

or zero if this is negative. Note that A is less than 1.

¢ Two properties:

<0, = (14+h)Fsing < (1—h)kb,

—

e Trade off: greater robustness only at greater allowed deflection.

e Zero robustness at estimated deflection.

§ Meaning of numerical values of :

h=

k6. — ﬁ’sinqb
k0. + ﬁ‘sinqb

e h = 0.2 implies performance guaranteed up to 20% error in both F and k.
e h = 0.7 implies performance guaranteed up to 70% error in both F and k.

e Asymptotic robustness:
lim h(f.) =1

0.—00

e Max possible robustness (in this problem:) immunity to 100% error.

o Small? Large? Large enough?
o Important and difficult value judgment.

2.4 Probability of Failure

§ Different prior knowledge:
e k is known.
e F'is exponentially distributed random variable:

p(F)=Xxe ' F>0

¢ Failure of failure:

e Mechanical failure [violating design requirement, eq.(2)]:

0] > 0.

¢ Probability of failure:
Py = Prob(|0] > 6.)

¢ Deriving probability of failure:

F'is non-negative so # is also non-negative. Hence the probability of failure is:

Fsin¢
k

P(\) = Prob(|0| > 6.) = Prob(6 > 6.) = Prob (

> HC) = Prob (F > s ) =

sin ¢
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exp (-

Ak@c>
sin ¢

(15)
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2.5 Hybrid Uncertainty: Probability with Info-Gaps
§ Continue from section 2.4, but with A uncertain.
¢ We know:

e )\, an estimate of ).
e )\ is positive.

§ We do not know:
e Maximum fractional error of the estimate.

¢ Probability distribution of \.

¢ Info-gap model for uncertainty in A:

L{(h):{)\:/\>0, )\:Xgh}, h>0 (16)
§ Two types of failure:
e Mechanical failure. Rotation too large:
10| > 0 (17)
¢ Probabilistic failure. Probability of failure too large:
Prob(|6] > 6.) > P, (18)

¢ Evaluate robustness with respect to probabilistic failure:

h = max{h: ( max Pf()\)> < PC} (19)

Aeu(h)

e Start with the inner maximum of eq.(19), m(h).
e From eq.(15), p.6, the inner maximum occurs at A = max[0, (1 — k)AJ:

m(h) = exp (_(1 — h))\kec> —p . (=M - sin ¢

> —InPF, h(P.)) =1+ =——InF,
sin ¢ sin ¢ = — (Fe) +)\9 "

C

(20)
or zero if this is negative.

¢ Two properties:
¢ Trade off: ﬁ(PC) decreases (gets worse) as P. decreases (gets better).
e Zeroing: Robustness vanishes at nominal 7:

h(P) =0 if P.=P;()\) =exp (-Si’ffqb) (21)
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3 Random Events and Failure: Info-Gap Robustness Analysis

3.1 Formulation

¢ Problem Statement:
o Adverse events occur randomly, independently, with average rate \/sec.
e System fails if n or more events occur within time T.

¢ Questions:
e What is probability of failure if n = 1 or n = 2?
e Suppose \ is uncertain. Evaluate robustness of failure probability.

3.2 Probabilities of Failure

§ Adverse events occur according to a Poisson process:
¢ Independent random events, constant average rate.
¢ Probability of exactly n events in duration 7' is:

(AT) e n=0,1,2,... (22)

Po(T) =

n!
¢ Failure probability for n = 1:

e The probability of no events up to time T is Py(T).

e Thus, for n = 1, the probability of failure is 1 — Py(T):

Pi—1-c (23)

¢ Failure probability for n = 2:
e The probability of less than 2 events up to time T"is Py(T) + Pi(T).
e Thus, for n = 2, the probability of failure is 1 — Py(T") — P (T):

Pro=1—e T - \Te™T (24)
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3.3 Uncertain Poisson Process

¢ We know:
e )\ = estimate of failure rate, \.
e s = estimate of error of \.
e )\ is positive.

§ We do not know:
e True value of \.
e Maximum fractional error of estimate.
¢ Probability distribution for A.

¢ Info-gap model for uncertainty in A:

A=\

L{(h):{)\: A>0,

gh}, h>0

¢ Two properties of all info-gap models:
¢ Contraction:

¢ Nesting:
h<h = U) CUm)

3.4 Robustness to Info-Gap Uncertainty in Poisson Process

& System model: P, in eq.(23) or (24).

¢ Performance requirement. Failure probability acceptably small:
Pf,n < PC

¢ Uncertainty model: eq.(25).

16/10/9

(26)

(27)

¢ Robustness function combines system model, performance requirement, and uncertainty model.

§ Evaluating the robustness for n = 1.
e The robustness is defined as:

h1(Ps) = max {h : ( max Pﬁl) < PC}
AeU(h)

e Let my(h) denote the inner maximum of eq.(29).

e According to eq.(23), m(h) occurs when ) is as large as possible: A = X + sh. Thus:

mi(h)=1—e OHNT < p — |}(R) =

- —\T —In(1— P.)

sT
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or zero if this is negative.
¢ Note trade off and zeroing.

§ Evaluating the inverse of the robustness for n = 2.
e The robustness is defined as:

/ﬁg = max{h : ( max Pfg) < Pc} (31)

AeU(h)

e Let ma(h) denote the inner maximum of eq.(31), which is the inverse of the robustness.
e From eq.(24), p.8, we find:

=2 M >0 (32)

e Thus my(h) occurs when X is as large as possible: A = X + sh.
e Thus, from eq.(24):

ma(h) = 1 — e~ O+shT _ (X 4 gpyTeOrshT (33)
e The robustness is the greatest h at which:

e Problem: We can't solve eq.(34) for h.
e Solution: No need to.
o my(h) is the inverse of h(P.).
o Plot of h vs ma(h) equivalent to plot of h(P.) vs P..
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4 Conclusion
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In Conclusion

¢ Info-gap uncertainty:

innovation, discovery, ignorance, surprise.
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In Conclusion

¢ Info-gap uncertainty:

innovation, discovery, ignorance, surprise.

§ Info-gap uncertainty is unbounded.
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In Conclusion
¢ Info-gap uncertainty:
innovation, discovery, ignorance, surprise.
§ Info-gap uncertainty is unbounded.

¢ Optimism: our models get better all the time.
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In Conclusion
¢ Info-gap uncertainty:
innovation, discovery, ignorance, surprise.
§ Info-gap uncertainty is unbounded.
¢ Optimism: our models get better all the time.

§ Realism: our models are wrong now

(and we don’t know where or how much).
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In Conclusion

¢ Info-gap uncertainty:

innovation, discovery, ignorance, surprise.
§ Info-gap uncertainty is unbounded.
¢ Optimism: our models get better all the time.

§ Realism: our models are wrong now

(and we don’t know where or how much).

§ Responsible decision making:
e Specify your goals.
e Maximize your robustness to uncertainty.
e Study the trade offs.

¢ Exploit windfall opportunities.
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