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Abstract Cascading failures occur in networks of interacting agents in which failure at one node
can cause further failures. We define the ‘degree of cascading failure’ as the fraction of nodes that
could fail as a result of one single failure. This refers to the possibility of failure, and thus involves
the uncertainty of failures. We emphasize vulnerability to uncertainty, and employ the concept of
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robustness as developed in info-gap theory, to study uncertain cascading failures. We study hier-
archical networks with unity of command, which means that each node in the hierarchy receives
a message from at most one other node. Our concern is in designing the network to adequately
manage cascading failures. We explore a situation where the decision maker must choose between
design alternatives that entail a dilemma: choose the putatively better but more uncertain option,
or choose the putatively worse but more reliable one? The info-gap robustness analysis offers a
resolution of this dilemma. This analysis underlies a critique of conventional optimization in which
one uses the best data, knowledge and understanding to prioritize the decision alternatives based
on predicted outcomes.

Keywords: cascading failures; uncertainty; info-gap; hierarchical networks; unity of command

1 Introduction: Cascading Failures

Networks of interacting nodes occur in a great diversity of situations. For instance, a supply network
has nodes of producers and consumers. A producer may face failure if its product is not purchased,
and a consumer may face failure if its demand is not satisfied. This is an “individualistic” network in
the sense that failure may occur at individual nodes rather than in the system as a whole, though
one could consider overall system failure. In contrast, a national defense network has nodes of com-
manders and operational units and the system as a whole fails if national security is not achieved,
even though individual nodes may survive. This is a “dedicated” network, though one could ana-
lyze a defense network from an individualistic perspective. In this paper we focus on individualistic
networks.

Cascading failures occur in individualistic networks of interacting agents when failure at one
node causes further failures. We define the ‘degree of cascading failure’ as the fraction of nodes
that could fail as a result of one single failure. This refers to the possibility of failure, and thus
involves the uncertainty of failures at individual nodes.

Probabilistic analysis has been fruitfully employed to identify generic characteristics of cascading
failures. Buldyrev et al. (2010) consider cascading failures of interconnected networks in which
nodes are randomly connected. They consider the probability distribution of the number of nodes
connected to each node in a network. As that probability distribution gets broader, the vulnerability
to cascading failures in the interconnected networks increases. Hines et al. (2017) study cascading
failures in electric power networks in which failures propagate non-locally: sequential failures can
be distant geographically and topologically because of the nature of power flows. They develop a
probabilistic Markov model of how cascading failures propagate in such networks.

Rinaldi et al. (2001) have demonstrated that cascading failures depend not only on the topology
of the network, but also on many other factors such as the social-political environment, the state
of repair, the type of failure, whether the interconnections of nodes are physical or logical, loose
or tight, and many other factors. Under ordinary situations, for which extensive historical data are
available, one can calibrate empirical probabilistic models to account for these factors.

Probabilistic models are less accessible under highly irregular, unprecedented and severe situa-
tions. We consider situations of deep uncertainty in which likelihoods cannot be accurately assessed
because historical precedents are lacking and the domain of possible disruptive events is poorly un-
derstood. Economic upheavals, severe terror attacks, rare combinations of natural catastrophes,
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disruptive technological innovations, or other major surprises are sources of deep uncertainty for
which probability models may be quite uncertain. Our focus in this paper is on the support of design
and policy decisions when probability distributions are uncertain or lacking.

The propensity for cascading failures of large degree may tend to increase with the size of the
network. However, this may not be true if the network is highly fragmented, or if nodes cooperate or
compensate or adapt in real time. Network size, topology and rules of behavior are important factors
in characterizing cascading failures. Nonetheless, our emphasis in this paper is not on identifying
generic traits of cascading failures, but rather on managing the deep uncertainty that makes these
failures pernicious.

We emphasize the distinction between vulnerability to threats, as distinct from vulnerability to
uncertainty. A threat is an event or situation that may cause disruption or damage. A threat acts in
the environment of the system in question; it is a substantive situation relating to that system. An
uncertainty is a lack of knowledge or understanding on the part of a decision maker. Uncertainty
is not a substantive threat, but it entails possible threats that are not known or identified. If there
were no threats, then uncertainty would be inconsequential, so threats are important. However,
design or planning decisions that are based on one’s best assessment of the threats — without
also managing the deep uncertainty in this assessment — is irresponsible. Under deep uncertainty
one’s best assessment may well be quite wrong, implying that prediction of outcomes may be quite
unreliable. One’s best assessment is only the starting point for managing the potential error in the
assessment, as expressed by one’s uncertainty.

We employ the concept of robustness, as developed in info-gap theory, to study cascading fail-
ures under deep uncertainty that cannot be adequately represented probabilistically (the info-gap
conception of uncertainty will be elaborated in section 3.1 and subsequently). This method attempts
to satisfy an outcome requirement, and to maximize the robustness against uncertainty. This is
a procedural optimization rather than a substantive optimization. The outcome is the substantive
‘good’ that one seeks, for instance, requiring that the degree of cascading failure is low. In the
methodology of info-gap robust-satisficing we only attempt to make the outcome good enough,
while the robustness is optimized. Vulnerability to deep uncertainty motivates the maximization of
robustness against surprise, rather than maximization of the quality of the outcome. The robust-
ness is an aspect of the procedure of reaching a decision, and is not an attribute of the substantive
outcome. What constitutes a good enough outcome can, of course, be as demanding or lax as one
wants.

Info-gap theory is a method for prioritizing options and making choices and decisions under
severe uncertainty (Ben-Haim, 2006, 2010, 2018). The options might be operational alternatives
(implement a policy, choose a budget, decide to intervene or not, etc.) or more abstract decisions
(choose a model structure, make a forecast, formulate a policy, etc.). Decisions are based on data,
scientific theories, empirical relations, knowledge and contextual understanding, all of which we’ll
refer to as one’s models, and these models often recognize and quantify uncertainty.

Info-gap theory has been applied to decision problems in many fields, including various areas of
engineering (Kanno and Takewaki, 2006; Chinnappen-Rimer and Hancke, 2011; Harp and Vesseli-
nov, 2013), biological conservation (Burgman, 2005), economics (Knoke, 2008; Ben-Haim, 2010),
medicine (Ben-Haim et al., 2012), national security (Moffitt, Stranlund, and Field, 2005), public pol-
icy (Hall et al., 2012), and more (info-gap.com). Info-gap robust-satisficing has been discussed
non-technically elsewhere (Schwartz, Ben-Haim, and Dacso, 2011; Ben-Haim, 2012 a, b, 2018).
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We illustrate three properties of info-gap robustness analysis: zeroing, trade off, and preference
reversal.

‘Zeroing’ asserts that predicted outcomes (e.g. degree of cascading failure) have no robustness
against uncertainty. Predicted outcomes, based on one’s best knowledge (which may be probabilis-
tic), are often used to design or evaluate a network. However, under deep uncertainty the knowledge
may err greatly, so predicted outcomes may not be a good basis for decision making, as stated by
the zeroing property.

‘Trade off’ asserts that greater robustness is obtained only in exchange for more modest outcome
requirements (e.g. accepting greater degree of cascading failure). Analysis and decision making
under deep uncertainty can be assisted by evaluating this trade off, as we will show. Specifically,
the choice that one makes between design or policy alternatives may differ from the putatively
optimal choice based on the best available knowledge. Zero robustness of the putative outcome,
and the trade off between outcome and robustness, can justify the choice of a putatively sub-optimal
alternative.

‘Preference reversal’ is the selection of a sub-optimal alternative over the putatively optimal
choice. Preference reversal between design or policy alternatives may occur in situations where one
alternative is putatively better but more uncertain than another option. The decision maker faces
a dilemma: choose the putatively better but more uncertain option, or choose the putatively worse
but more reliable option? The info-gap robustness analysis offers a resolution of this dilemma. This
analysis underlies a critique of conventional optimization in which one uses the best data, knowledge
and understanding to prioritize the decision alternatives based on predicted outcomes.

Fraid (2016) has studied the application of info-gap decision theory to cascading failures in dy-
namic networks involving supply and demand requirements at each node. In this paper we use
examples of static networks to explore the implications of deep uncertainty, and to demonstrate the
info-gap analysis of robustness to support decision making. The first example, in section 3, explores
a general serial network with uncertain probability of successful transmission from one node to the
next. Section 4 generalizes this to hierarchical networks with unity of command. In all examples
we illustrate the properties of zeroing, trade off, and preference reversal, and we explore how the
robustness analysis supports design and policy decisions. On a more general level, our analysis
is a critique of conventional optimization, as mentioned above and elaborated in the concluding
discussion, section 5.

We begin by defining and illustrating the concept of the degree of cascading failure of a network.

2 Degree of Cascading Failure: Definition and Examples

Consider a network with n nodes. The network has cascading failures of degree φ if φ is the
largest fraction of nodes in the network that could fail as the result of failure of one node of the
network.

Example 1 Consider the game of ‘telephone’ in which n people sit in a row. The first person has
“received” a message (perhaps by inspiration) and whispers the message to their neighbor, who
whispers the message to the next neighbor, etc. The last person to receive the message announces
it out loud. That announcement often differs greatly from the original version, to everyone’s delight.
This game involves n transmissions of the message (including the final announcement), any one
of which could corrupt the message. We will assume that no corruption could correct a previous
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Figure 1: Triangular hierarchical network for example 3.

corruption.1 A node fails if the message that it transmits is a corruption of the original message. The
first transmission could be corrupted, meaning that all n transmissions of nodes 1, . . . , n would be
corrupted. Thus this is a network with cascading failure of degree φ = 1.

Example 2 Consider n observers watching the same scene, for instance a volcano. Assume that
this scene is in one of two well defined states. For instance, either “eruption” or “no eruption” of
the volcano. Observer i fails if it records the scene incorrectly. There is no communication between
observers, so failure of any one observer has no effect on any other observer. Hence this network
has cascading failure of degree φ = 1/n.

Example 3 Hierarchical network. Consider a triangular hierarchical system such as shown in fig. 1.
Each node on the bottom row has received a message that it passes to either 1 or 2 nodes in the
layer just above. Every receiving node does the same. Each node may corrupt the message it has
received. A single node in the bottom row of a 2-row network (e.g. the top two rows in fig. 1) could
pass a corrupted message to the top node so the degree of cascading failure of this 3-node network
is φ = 2/3. In the 3-row network with 6 nodes, the central node in the bottom row could “infect” three
higher nodes, so the degree of cascading failure is φ = 4/6 = 2/3. One can readily show that the
generalization of the network in fig. 1, to have 2n or 2n+ 1 rows, has degree of cascading failure:

φ2n = φ2n+1 =
n+ 1

2n+ 1
, n = (0, ) 1, 2, . . . (1)

where the expression for φ2n+1 holds also when n = 0.

The degree of cascading failure, φ, is a deterministic property of the network: the largest possible
fraction of nodes that could fail in a cascading failure. However, the fraction of nodes involved in a
specific cascading failure can be smaller than φ. Let ψ denote the fractional size of a cascading
failure in a network with n nodes. ψ can take values from among 0/n, 1/n, 2/n, . . . , φ.

1For example, if the message is a single binary bit, a corruption would change the bit, and a subsequent corruption
would change the bit back to its original value, which thus corrects the previous corruption. We exclude this possibility by
considering only complex messages.
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3 Serial Network with Uncertain Transmissions

3.1 Cascading Failures and Uncertainty

Let us refine our definition of corruption of a message. A message is corrupted if it is significantly
different from the original message. For instance, if the original message was “I really want to talk
to Ted”, and the transmission is “I very much want to talk to Ted”, then we might not consider this
to be a corruption; the meaning is really (or very much) the same. However, sequential insignificant
alterations of a message may accumulate to a significant alteration.

To formalize this, let µ0 denote the original message that the first node intended to transmit, and
let µi denote the message transmitted by node i, for i = 1, . . . , n. Message µi is not corrupted if
and only if:

|µi − µ0| ≤ δ (2)

where |·| is a distance function in a compact metric space of messages and δ is the largest alteration
of a message that is not a corruption. For any messages in the space, the distance function | · | is a
non-negative real function with 3 properties. Unique zero: |ζ−ν| = 0 if and only if ζ = ν. Symmetry:
|ζ − ν| = |ν − ζ|. Triangle inequality: |ζ − ν| ≤ |ζ − η| + |η − ν| (see Kolmogorov and Fomin, 1975,
p.37).

For clarity, we explain that compactness of a metric space is a generalization of the concept of
a space (such as a Euclidean space) which is closed (all its limit points belong to the space) and
bounded (all points in the space lie within some finite distance of one another).

Let µ = (µ1, . . . , µn) denote the vector of messages that are transmitted in the serial network,
and let ψ(µ) denote the fraction of corrupted messages in µ according to the definition of corruption
in eq.(2). We can formalize ψ(µ) as follows. Let `(µ) be the lowest index of a corrupted message
in µ, where we define `(µ) = n + 1 if no messages in µ are corrupted. Recall that if the ith mes-
sage is corrupted, then all subsequent messages are also corrupted. Thus, the fraction of failed
transmissions for a vector of messages µ is:

ψ(µ) =
n+ 1− `(µ)

n
(3)

The process and extent of corruption of messages at each node is highly uncertain, either a priori
or after the fact: we don’t know what messages will be, or were, corrupted. The message transmitted
by node i, µi, may differ by an unknown amount from the message received in that node, µi−1, for
i = 1, . . . , n. We do not know the distance between these messages, |µi − µi−1|, and it may be
small or large. An info-gap model expressing this unbounded uncertainty in the corruption of the
messages is:

U(h) = {µ : |µi − µi−1| ≤ h, i = 1, . . . , n} , h ≥ 0 (4)

U(h) is the set of all message vectors in the space, µ, in which each message differs from its pre-
decessor by no more than h (which is a non-negative real number). (Note that, because the space
is compact, it contains its limit points and thus U(h) contains messages for which the inequality in
eq.(4) is an equality.) When h is small, then the set U(h) contains all messages whose corruption
is at most small. As h gets larger, the set contains messages with greater degree of corruption.
However, the value of h is unknown, because the degree of corruption is unknown. Hence the info-
gap model is not a single set, but rather the unbounded family of nested sets of messages U(h), for
h ≥ 0. We refer to h as the horizon of uncertainty because the range of uncertain variation of the
messages increases as h increases.
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Figure 2: Robustness curve with
5 nodes, eq.(6). Calculated with
tele002.m

Figure 3: Robustness curve with
50 nodes, eq.(6). Calculated
with tele002.m

3.2 Robustness of Degree of Cascading Failures

No nodes will fail in the absence of error because each message is accurately transmitted, in which
case ψ = 0/n. However, uncertainty is rampant so failure can occur. We would like the fraction of
failed nodes to be small, and the largest acceptable fraction is m/n. The “robustness question” is:
how much uncertainty can we tolerate and the fraction of failed nodes will be no greater than m/n?
More formally, our requirement is that the fraction of failed transmissions, ψ(µ), not exceed the value
m/n:

ψ(µ) ≤ m

n
(5)

The robustness for satisfying this requirement is the greatest horizon of uncertainty, h, up to
which all message vectors µ in the uncertainty set U(h) satisfy this requirement:

ĥ(ψ ≤ m/n) = max

{
h :

(
max
µ∈U(h)

ψ(µ)

)
≤ m

n

}
(6)

It is crucial to understand the relation between the horizon of uncertainty, h, and the robustness,
ĥ. The horizon of uncertainty is the unknown level of variation between successive messages, as
stated in the info-gap model of uncertainty in eq.(4); all we know about h is h ≥ 0. The robustness,
ĥ, is the greatest horizon of uncertainty, (the greatest value of h), up to which the requirement in
eq.(5) is guaranteed to hold. Thus ĥ is a specific value of h. The robustness is known (or at least
calculable) while the horizon of uncertainty is not known. In other words, we do not know the level
of message corruption (h), but we do know how much corruption we can tolerate without violating
the performance requirement (ĥ). Stated differently, the robustness function expresses the degree
of confidence in achieving acceptable outcome: fractional failure no greater than m/n. Alternatively,
one can use the robustness function to identify outcomes (fractional failures) that can be confidently
expected. The inner maximum in the definition of the robustness function is derived in appendix A,
and from that the robustness function is deduced.

Figs. 2 and 3 shows the robustness function of eq.(6) for a telephone game with n = 5 and n = 50

nodes, respectively, and maximum acceptable alteration of messages of δ = 0.5, as evaluated with
eqs.(35) and (36) in appendix A. The positive slope shows the trade off between robustness and
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the degree of cascading failure: greater robustness is obtained only by allowing greater cascading
failure. Comparison of the two figures shows that the robustness decreases as the size of this linear
network increases, as stated in eq.(37) and proven at the end of appendix A.

3.3 Uncertain Probability of False Transmission

We have considered uncertainty in the transmission of messages in a serial network, as represented
by the non-probabilistic info-gap model in eq.(4), U(h) for h ≥ 0. We now consider the probability
of accurate transmission, π, but treat the value of this probability as uncertain. We will employ an
info-gap model to represent this non-probabilistic uncertainty in the value of the probability, and we
will then evaluate the robustness to this uncertainty. That is, we embed an uncertain probabilistic
model in a non-probabilistic info-gap model of uncertainty. We now formulate these ideas precisely.

3.3.1 Formulation

Let π denote the probability that any single node accurately transmits the message it received. We
will assume that the probability of accurately transmitting the received message is the same for all
nodes, and that correct transmission is statistically independent between nodes.

As noted at the end of section 2, the degree of cascading failure, φ, is not a random variable;
it is a deterministic property of the network: the largest possible fraction of nodes that could fail in
a cascading failure. However, the fraction of nodes involved in a specific cascading failure can be
smaller than φ. Let ψ denote the fractional size of a cascading failure in a serial network with n

nodes. In this formulation of the example, ψ is a random variable with values 0/n, 1/n, 2/n, . . . , φ.
As shown in appendix B, the probability of cascading failures larger than i/n is:

P

(
ψ >

i

n

)
= 1− πn−i, i = 0, 1, . . . , n (7)

At fixed network size, n, and fixed probability π, the probability of cascading failures larger than i/n
decreases as i/n increases.

3.3.2 Cascading Failures and Robustness

We suppose that we have an estimate, π̃, of the probability of accurate transmission from one
node to the next in the serial network, and an estimated error of this estimate, a positive number s.
Roughly speaking, π is estimated as π̃ ± s, where we recognize that the actual error may exceed s.
More precisely, the fractional error of π with respect to π̃ is |π− π̃|/s, whose magnitude is unknown.
Thus the info-gap model of uncertainty is:

U(h) =
{
π : π ∈ [0, 1],

∣∣∣∣π − π̃s
∣∣∣∣ ≤ h} , h ≥ 0 (8)

Like all info-gap models of uncertainty, this is an unbounded family of nested sets.2 When h = 0 the
set contracts to the estimated value: U(0) = {π̃}. As h increases the sets become more inclusive.
Thus h is called the horizon of uncertainty, and its value is unknown; there is no known worst case.

2The family of sets is unbounded in the space of possible probability values, [0, 1].
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We would like to design or manage the network so that the probability of large cascades is small.
More precisely, we require that the probability of cascading failures with degree larger than i/n have
probability no greater than a critical value Pc. That is, we require:

P

(
ψ >

i

n

)
≤ Pc (9)

For any choice of this critical probability, Pc, we would like to know if this requirement is feasible
in light of the deep uncertainty about the probability of accurate transmission. Alternatively, we
would like to know what Pc values are feasible. The answers to these questions are provided by the
robustness function.

The robustness is the greatest horizon of uncertainty, h, in the info-gap model of eq.(8), up to
which the requirement in eq.(9) is guaranteed. Formally, the robustness to uncertainty in π is defined
as:

ĥ(Pc, i) = max

{
h :

(
max
π∈U(h)

P

(
ψ >

i

n

))
≤ Pc

}
(10)

As shown in appendix C, the robustness function is:

ĥ(Pc, i) =
1

s

(
π̃ − (1− Pc)

1/(n−i)
)

(11)

or zero if this is negative.
The best-estimated prediction of the probability that the degree of cascading failure exceeds

i/n is, from eq.(7), P (ψ > i/n) = 1 − π̃n−i. From eq.(11) we see that the robustness reaches
the horizontal axis precisely when the critical probability, Pc, equals this predicted value. That is,
if 1 − π̃n−i is adopted as the performance requirement, Pc in eq.(9) — and some would consider
this sensible because it is the best estimate of the probability that the degree exceeds i/n — then
the robustness for satisfying this requirement is zero. This is the zeroing property: best-model
predicted outcomes have no robustness against uncertainty underlying the predictions.

Eq.(11) also shows the irrevocable trade off between robustness and performance: as the per-
formance requirement becomes more demanding (as Pc is decreased) the robustness becomes
smaller (ĥ(Pc, i) goes down). This is a trade off because we would like Pc to be small and ĥ to be
large.

The robustness function of eq.(11) is shown in fig. 4 for n = 100, π̃ = 0.999, s = 0.05, and
three different values of i: 10, 20 and 30. As we expect from eq.(11) and the zeroing property, the
robustness vanishes when Pc = 1 − π̃n−i, which equals 0.087, 0.078 and 0.068 for i = 10, 20 and
30, respectively. Furthermore, the robustness increases as Pc increases as seen from the positive
slopes of the curves, expressing the trade off property. We also see that the robustness increases
as i increases. This is because the probability of cascading failures larger than i/n decreases as
i/n increases, as seen from eq.(7).

We now consider two different implementations of the serial network, both with π̃ = 0.999. In one
we have better knowledge so the error estimate, s, is smaller, but the number of nodes is greater, so
n is larger. In both cases i/n = 0.2. Specifically, in the first implementation, n1 = 100, s1 = 0.05 and
i = 20 as before (middle curve of fig. 4), and the estimated probability that the degree of cascading
failure exceeds i/n is P (ψ > i/n) = 0.078. In the second implementation n1 = 60, s1 = 0.15 and
i = 12 and the estimated probability is P (ψ > i/n) = 0.048. That is, the poorer information in the
second case (s2 > s1) is compensated by the smaller number of players (n2 < n1).
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Figure 4: Robustness curves for 3 values of i. π̃ = 0.999, n = 100, s = 0.05. Calculated with cf003.m

0 0.1 0.2
 Critical Probability

0

0.02

0.04

0.06

R
ob

us
tn

es
s

Figure 5: Robustness curves for 2 values of n, s and i but i/n = 0.2 in both cases. π̃ = 0.999.
Calculated with cf004.m
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(3,2)

(1,1)

(2,1)

Figure 6: Hierarchical network with 3 rows and 2 branches at each node.

Plots of robustness curves for these two implementations are shown in fig. 5. The robustness
curves cross one another, implying the potential for a reversal of preference between these two
options. The second option (dashed curve) is putatively better: its predicted probability that ψ ex-
ceeds i/n is lower because of the smaller size of the network, as we expect from eq.(7). That is,
the best assessment is that the second option is less vulnerable to failure. However, from the ze-
roing property we know that predicted outcomes have no robustness to uncertainty. From the trade
off property we know that only poorer outcomes (larger Pc) have greater robustness to uncertainty.
However, the trade off is more severe for the putatively better case (dashed curve) because the un-
certainty, as expressed by s2, is greater. That is, the second option is more vulnerable to uncertainty.
As a consequence, the robustness curves cross one another at Pc = 0.11. If one needs a critical
probability less than 0.11, then option 2 is more robust, though its robustness is small. If greater Pc

would be acceptable then option 1 is more robust.

4 Hierarchical Networks with Unity of Command

We now generalize the serial networks studied in section 3 by considering hierarchical networks
with unity of command.

4.1 Introduction

We study hierarchical networks as in the simple example of fig. 6, though generalizing to arbitrary
number of rows and branching ratio. The single node in the highest row receives a message from
an external source and passes it along to all the nodes in the 2nd row. Each node passes the
message it receives to nodes in the next lower row until the message reaches the bottom of the
network. Throughout the network, each node receives a message from exactly one other node,
which expresses the unity of command in the network.

Unity of command is prevalent in militaries, occurring widely throughout the history of war, but
also in commercial and industrial organizations (Takahashi, 1986) as elaborated by Henri Fayol
(see Godwin et al., 2017). The prominence of unity of command is strongly supported by battlefield
experience. For instance, Murray and Hsieh (2016, pp.119–120) discuss situations in the Amer-
ican Civil War in which adverse outcomes resulted from absence of unity of command. Unity of
command has also been adopted in disaster management to manage or ameliorate volatile civilian
catastrophes (Pal, Ghosh and Ghosh, 2017). Unity of command comprising both civilian and mili-
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tary elements is important for successful nation-building against an insurgency when the insurgents
target military and non-military units indiscriminately, as done by the Taliban in Afghanistan. With-
out civilian-military unity of command the military mission may succeed while the governance and
humanitarian missions may fail (Welle, 2010).

The generalization of section 3 is not only in the topology — hierarchical and branching rather
than serial. The concept of a message now refers to actions as well as statements, either of which
induce a subsequent action or statement. For instance, Diener (2018) discusses promotion in a
military hierarchy. When a vacancy occurs at one rank, a person in the next lower echelon is
promoted, which creates a new vacancy, and subsequent promotion down to the lowest level. Each
vacancy creates a generic message that propagates down the hierarchy. Furthermore, the message
is intended to evolve in a pre-planned manner. For instance, a command at one node is intended
to elicit a specific action at the next node which in turn should elicit a specific response at the next
node, and so on. Actions and statements may deviate from the plan, and central to our analysis is
the uncertainty that accompanies this process.

Consider two examples. The top node receives a message from an external source. For a
company president this might be the stock holders demanding greater profits. For a military general
this might be the civilian commander in chief demanding successful conclusion of the war. The
general then gives orders (messages) to the special operations division, to the tank division, and
so on. Special Ops then gives orders to intelligence units, activates commando units etc., while the
tank commander activates field commanders, logistic units, and so on. Different orders are given at
each level and on each branch of every node, but all are intended to conform to an overall plan.

As in section 3, deviation of a message from the plan at any particular node occurs if either that
node significantly alters the message (responding differently than intended), or faithfully transmits a
corrupted message (responding correctly to a faulty message). As before, we assume that corrup-
tion of a corrupted message cannot correct that message. The serial network of section 3 now is
one path within the hierarchy, albeit with the generalized conception of a message. We formalize
this process in section 4.2.

Our focus on networks with unity of command is motivated in part by their continuing relevance
in many situations. But also by the fact that even this simple traditional structure is fraught with
challenges in assessing vulnerability to uncertainty.

4.2 Formulation

4.2.1 Topology

The network has R rows, which can be thought of as echelons in an organizational hierarchy such
as an army. The first row has only one node, and each node (except in the bottom row) branches
into B nodes in the next lower row; we refer to B as the branching ratio. (For simplicity we do not
consider varying branching ratio among the nodes, though the analysis can be extended to include
this.) Fig. 6 shows an example with R = 3 and B = 2.

The number of nodes in row i is Ni = Bi−1 for i = 1, . . . , R. If the branching ratio, B, is greater
than 1, then the total number of nodes in the network is:

N =
R∑
i=1

Bi−1 =
BR − 1

B − 1
(12)

If B = 1 then the number of nodes equals the number of rows: N = R.
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4.2.2 Messages and Corruption

Let µij denote the message — action or statement — transmitted by node j in row i, for i = 1, . . . , R

and j = 1, . . . , Ni. As explained in section 4.1, this message may take different forms in the context
of the different branches to which it is transmitted. Each receiving node is intended to understand
the message in the context of its location in the network or its role in the overall plan. Each node
in the bottom row also issues a message that is an action or statement. The external message
received by the highest node is µ0.

In analogy to eq.(2), message µij is not corrupted if and only if:

|µij − µ0| ≤ δ (13)

The distance function, | · |, assesses the degree of deviation of the message (action or statement)
transmitted by node (i, j) from the intended message according to the overall plan inherent in the
initiating message, µ0. As in section 3, we never actually have to specify this distance function, other
than to assert its obeyance of the triangle inequality and other basic properties of a compact metric
space.

Because of the unity of command, there is one and only one path — chain of command — from
the single node in the top row, to each node in the bottom row. Likewise, each path contains exactly
one node in each row because of the unity of command. There are R rows and NR nodes in the
bottom row, so there are exactly NR paths in the network. Let Cj denote the ordered sequence of
node indices along the path to node j in the bottom row, for j = 1, . . . , NR. For instance, C2 in fig. 6
is:

C2 = ((1, 1), (2, 1) (3, 2)) (14)

More formally, the elements of Cj are denoted:

Cj = (c1,j , c2,j , . . . , cR,j), j = 1, . . . , NR (15)

Note that c1,j = (1, 1) and cR,j = (R, j) for all paths. For C2 in fig. 6 the elements are c1,2 = (1, 1),
c2,2 = (2, 1) and c3,2 = (3, 2).

The state of the network is specified by the set S containing the message transmitted by each
node. Thus S contains N messages because there are N nodes. For any given set S, Let Sj denote
the subset of S containing the messages along path Cj . There is one such subset for each of the
NR nodes in the bottom row. Formally:

Sj =
(
µc1j , µc2j , . . . , µcRj

)
, j = 1, . . . , NR (16)

For instance, for C2 in fig. 6, and referring to eq.(14), we have:

S2 = (µ1,1, µ2,1 µ3,2) (17)

Let `(Sj) denote the highest row with a corrupted message in the set of messages Sj . Define
`(Sj) = R+1 if no message in Sj is corrupted. Let ψ(Sj) denote the fraction of corrupted messages
in Sj . Reasoning as in eq.(3), we find:

ψ(Sj) =
R+ 1− `(Sj)

R
(18)

for each j = 1, . . . , NR.
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4.3 Network Robustness and First Generic Result

In section 4.1 we explained that the concept of a message includes actions and statements, and that
the message is intended to change along each path according to an overall plan. Furthermore, we
need to account for different difficulties, uncertainties, and propensities for deviation of the messages
along the different paths. For instance, the challenges, potential disruptions, and uncertainties in
military special operations are different from those of military logistics. Interfering factors include
weather, civilians, the enemy, deficient morale, and so on, and these act differently in different paths
of the network.

As in section 3, the messages are uncertain, though we must extend the info-gap model of
uncertainty in eq.(4) to account for different challenges at different nodes along different paths. We
do this as follows.

Consider a message, µcij , in path Cj . Its deviation from the prior message, µci−1,j , is |µcij −
µci−1,j |. (When i = 1 we define µc0j = µ0 which is the external initiating message.) In line with the
explanation of eq.(13), this distance is the degree of deviation of message µci,j from the intended
message at that node, according to the overall plan inherent in message µci−1,j . This distance will
be zero in the absence of uncertainty. In many situations we are able to identify messages that are
more vulnerable to uncertainty, and others that are less so. Moreover, we can make judgments for
each message about its relative vulnerability, as expressed by a typical degree of deviation at node
cij , denoted by a positive “uncertainty weight” wcij . At any horizon of uncertainty, h, the range of
uncertain deviation at node cij is:

|µcij − µci−1,j |
wcij

≤ h (19)

A large value of wcij implies that µcij tends to vary greatly even at a small horizon of uncertainty h;
a small uncertainty weight implies small variation.

We are considering situations of deep uncertainty, so the horizon of uncertainty, h, is unknown
and unbounded. Hence the uncertainty weights, wcij , do not establish maximal deviations, but only
relative distances of deviation at any value of h. We now arrive at the info-gap model of uncertainty
of the messages in path Cj , in analogy to eq.(4):

U j(h) =
{
Sj :

|µcij − µci−1,j |
wcij

≤ h, i = 1, . . . , R

}
, h ≥ 0 (20)

for each j = 1, . . . , NR.
We first consider the robustness of a single path, Cj . As in eq.(5), we require that no more than

a fraction m/R of the messages in path Cj are corrupted, where m is an integer from 0 to R. That
is, for each path Cj , we require:

ψ(Sj) ≤
m

R
(21)

In analogy to eq.(6), the robustness of path Cj is:

ĥj(ψ ≤ m/R, δ) = max

{
h :

(
max

Sj∈Uj(h)
ψ(Sj)

)
≤ m

R

}
(22)

for each j = 1, . . . , NR.
The overall network robustness could be defined in different ways. The total number of nodes in

the network is N , so one definition of overall robustness would be the greatest horizon of uncertainty

14



up to which the fraction of all failed nodes is no greater than m/N , where m is an integer from 0 to
N . Some paths may have low fractional failure and others high fractional failure, but network failure
is defined to occur only if the total fractional failure exceeds m/N .

Alternatively, each path can be thought of as a chain of command to a final action node in the
bottom row. In this case, one would define the overall network robustness as the greatest horizon of
uncertainty up to which no path has fractional failure greater than m/R, where m is an integer from
0 to R. We adopt this concept of overall robustness, whose definition is:

ĥ(ψ ≤ m/R, δ) = max

{
h :

(
max

1≤j≤NR

max
Sj∈Uj(h)

ψ(Sj)

)
≤ m

R

}
(23)

This overall network robustness equals the robustness of the most vulnerable path because all paths
must have fractional failure no greater than m/R. Hence:

ĥ(ψ ≤ m/R, δ) = min
1≤j≤NR

ĥj(ψ ≤ m/R, δ) (24)

The robustness function in eq.(22) is a step-wise discontinuous function, derived in appendix D,
resulting in eq.(56) when δ = 0, and eq.(66) when δ > 0. In the latter case an explicit expression for
the robustness is:

ĥj(ψ ≤ m/R, δ) =
δ

R−m∑
i=1

wci,j

, m = 0, 1, . . . , R (25)

We define the sum in the denominator to be zero when m = R, resulting in infinite robustness if we
are willing to accept any number of message distortions along the path.

The following proposition gives us our first generic insight into the info-gap robustness function
and its implications for designing the hierarchical topology. The proof appears in appendix E.

Proposition 1 Given:
1. A hierarchical network with unity of command containing R rows and branching ratio B.

2. The threshold for corruption of a message is positive: δ > 0 in eq.(13).

3. The info-gap model of eq.(20) where all uncertainty weights are positive: wci,j > 0.

4. The definition of the robustness of path Cj , ĥj(ψ ≤ m/R, δ) in eq.(22).

5. The definition of the overall network robustness, ĥ(ψ ≤ m/R, δ) in eq.(23).

Then:
1. The overall network robustness, ĥ(ψ ≤ m/R, δ), equals the robustness of the path whose

average uncertainty weight of the first R−m nodes is maximal.

2. If R > 1 then this is not necessarily the path containing the node with maximal uncertainty
weight from among all nodes in the network.

This proposition provides insight into the perspective provided by the analysis of robustness, and
how that perspective may alter one’s choice of the network topology.

Cascading failures occur when one node fails to adequately transmit its message, causing sub-
sequent nodes to fail as well. Vulnerable nodes — whose estimated uncertainties are large as
expressed by their uncertainty weights wij — are foremost candidates for initiating a cascading fail-
ure. Paths containing these especially vulnerable nodes might reasonably draw particular attention,
leading perhaps to design alterations or resource allocations to modify those vulnerable nodes.
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However, the first assertion of proposition 1 states that the robustness depends on the path-
average uncertainty weight, not the network-maximal uncertainty weight. The second assertion
states that the least robust path — which determines the network robustness — need not include
the most vulnerable node. Consequently, the robustness analysis may lead to design alterations
or resource allocations that differ from choices based on identifying the most vulnerable nodes.
Choices based on robustness will enhance the immunity to deep uncertainty, while choices based
on attention solely to the most vulnerable nodes may not.

4.4 Example: Identical Nodes

As a simple example we consider the case of identical nodes. The uncertainty weights wcij in the
info-gap model of eq.(20) are all the same, and we can assign each of them the value of 1. All the
paths are the same, and identical to the single-path serial example in section 3 when we replace
n with R: The info-gap model of eq.(4) is the same as eq.(20), and the robustness in eq.(6) is the
same as eq.(22). Because the paths are identical, eq.(24) implies that the network robustness in
eq.(23) is the same as the serial robustness, eq.(6).

From eq.(35) in appendix A, and in light of the equivalence of the robustness functions that we
just explained, we see that the network robustness for no deviant messages is:

ĥ(ψ = 0, δ) =
δ

R
(26)

We can combine this relation with the expression for the total number of nodes in the network,
eq.(12), to explore the trade off between network topology, R and B, and network robustness,
ĥ(ψ = 0, δ). Table 1 shows results.

R ĥ(ψ = 0, δ) N(R,B = 2) N(R,B = 3) N(R,B = 4) N(R,B = 5)

2 0.50 3 4 5 6
3 0.34 7 13 21 31
4 0.25 15 40 85 156
5 0.20 31 121 341 781
6 0.17 63 364 1365 3906
7 0.15 127 1093 5461 19531
8 0.13 255 3280 21845 97656
9 0.12 511 9841 87381 488281

10 0.10 1023 29524 349525 2441406

Table 1: Number of nodes, N , vs. R and B, eq.(12). Network robustness for δ = 1.

Each row of table 1 corresponds to a value of the number of rows in the hierarchical network, R
in column 1. The 2nd column is the robustness for no deviant messages, with δ = 1, which depends
on R as seen in eq.(26). Columns 3 to 6 show the total number of nodes, N in eq.(12), for the
corresponding number of rows, R, and branching ratio, B.

R, B and N are all necessarily integers, yet one can find combinations of R and B for which N
is roughly constant. For instance, the 3 bold face numbers in table 1 represent hierarchies with 31,
40, and 31 total nodes, where the topologies are (R,B) = (5, 2), (4, 3) and (3, 5), respectively. Not
surprisingly, the total number of nodes is roughly constant as the number of rows decreases and
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the number of branches increases. The same trend is seen in the 3 N -values in boxes, and the 2
underlined values.

What is particularly significant in table 1 is the relation between topology, R and B, and ro-
bustness, ĥ(ψ = 0, δ). Keeping the total number of nodes constant does not by any means keep
the robustness constant. The robustness at (R,B) = (5, 2) is ĥ = 0.20, while the robustness at
(R,B) = (3, 5) is ĥ = 0.34, though N = 31 in both cases. Similar increase of robustness is seen in
the other examples as well.

At a purely technical level this is explained by two observations. First, the robustness is inde-
pendent of the network branching because it is purely a property of each serial path. Second, the
robustness increases as the serial path becomes shorter. Thus, to keep N roughly constant one
moves up in the table (which increases the robustness) and moves right (which has no effect on the
robustness).

The strong relation between topology and robustness is significant because robustness should
be a significant factor in choosing a topology when the network faces deep uncertainty, such as
we are considering. Topology itself may be functionally significant, and the number of nodes re-
flects this functionality in part. But functionality also depends on reliable transmission of messages.
Hence the robustness is important in assuring reliable functionality, and may tip the balance between
alternative topologies.

For example, Salmerón and Appleget (2014) discuss the choice between “keeping a larger num-
ber of BCTs [brigade combat teams] that have predominantly two maneuver battalions, and creating
a smaller number of BCTs that all have three maneuver battalions.” This choice of hierarchical topol-
ogy can, and should, be supplemented with the analysis of robustness.

4.5 Second Generic Result

In this section we present and discuss a proposition that generalizes the conclusions discussed in
section 4.4 that was limited to the special case of identical nodes. We now consider a hierarchical
network with unity of command in which each node has its own uncertainty weight as in the info-gap
model of eq.(20).

The main conclusion from the example in section 4.4, seen in table 1, was that the robustness
can change substantially when the number of rows, R, and branches per node, B, are varied to
keep the total number of nodes at least roughly constant. This conclusion holds also for the general
case, as we now explain. This is important because it shows that the choice of hierarchical topology
can, and should, be supplemented with the analysis of robustness to uncertainty.

The three assertions in the following proposition underlie our discussion. The proof of this propo-
sition appears in appendix F.

Proposition 2 Given:
1. A hierarchical network with unity of command containing R rows and branching ratio B.
2. The threshold for corruption of a message is positive: δ > 0 in eq.(13).
3. The info-gap model of eq.(20) where all uncertainty weights are positive: wci,j > 0.
4. The definition of the robustness of path Cj , ĥj(ψ ≤ m/R, δ) in eq.(22), for m ≤ R.
Then:

1. Assertion 1. Each path robustness strictly increases as the number of rows decreases:

ĥj(ψ ≤ m/R, δ) > ĥj(ψ ≤ m/R′, δ) for R < R′ (27)
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2. Assertion 2. The robustness of any specific path in the given network is independent of the
branching ratio.

3. Assertion 3. Each path robustness strictly increases as the greatest acceptable number of
corrupted messages, m/R, increases:

ĥj(ψ ≤ m/R, δ) > ĥj(ψ ≤ n/R, δ) for n < m ≤ R (28)

The first assertion in proposition 2 states that short paths are more robust than long paths.
Eq.(25) shows that the robustness of a path can also be increased by reducing the uncertainty
weights, wci,j , through improving the understanding of the circumstances in which that path op-
erates. However, achieving this enhanced understanding may be costly or infeasible. The first
assertion in proposition 2 provides an alternative: robustness of a path is increased by reducing its
length. As a military example, special operations units should have short command chains because
of great ambient uncertainty, while logistics units can tolerate longer command chains due to lower
uncertainty. Beyond this basic intuition, the info-gap analysis provides quantitative assessment of
robustness, eq.(25), and thus quantitative evaluation of the utility of specific organizational changes.

The second assertion in proposition 2 states that the path robustness does not depend on the
number of branches at each node. This is a distinctive feature of networks with unity of command.

The first two assertions together demonstrate that the robustness will increase asR is decreased
and B is increased while keeping the total number of nodes (roughly) constant. The discussion of
table 1, showing increasing robustness along diagonals in the table, holds also for general hier-
archical networks with unity of command. The total number of nodes often results from resource
constraints. The effectiveness of those nodes depends in part on the reliable transmission of the
generic message at each node. Hence the robustness should inform the allocation of resources in
designing the topology of the network, R and B.

The third assertion in proposition 2 states that, at fixed path length, allowing more corrupted mes-
sages is strictly more robust than requiring fewer corruptions. Fewer corrupted messages is better
than more corruptions, and robustness can be increased by topological changes or by improving
one’s information. However, for a given topology and state of knowledge, the third assertion offers
the commander or manager the basis for deciding if the requirement must be relaxed (because the
robustness is currently quite small), or whether it can be made stricter (because the robustness is
currently very large). The robustness function, eq.(25), provides quantitative assessment in support
of this judgment.

For example, suppose that the commander initially requires that the degree of cascading failure
not exceed a specified value, say 3/10 (maximum of 3 corruptions in a path with 10 nodes). Suppose
further that the robustness for achieving this is enormous. The third assertion clearly suggests that
the requirement can be made stricter, perhaps 1 or 0 corruptions in the path. Alternatively, suppose
the commander initially requires no corruptions, but the robustness for this requirement is tiny or
even zero. If topological change or information acquisition are not feasible, then the third assertion
suggests exploring the extent to which the requirement must be relaxed in order to attain good
robustness.
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5 Discussion

We have used the term “models” to refer to one’s data, knowledge and understanding. The con-
ventional optimization of a decision begins by using the best models that one has to predict the
outcomes of the decision alternatives. One then chooses the option whose predicted outcome is
best. This “best-model optimization” makes sense when one’s models are fairly good. However,
when the models are subject to deep uncertainty, then the zeroing property of the info-gap robust-
ness function demonstrates that the predictions have no immunity against this uncertainty: their
robustness is precisely zero. This means that the prioritization of the decision alternatives, based
on their best-model predicted outcomes, is unreliable.

Furthermore, the trade off property of the robustness function implies that outcomes less desir-
able than the predicted outcome can have positive robustness against uncertainty. Decision analy-
sis must, therefore, be based on exploring the robustness curve, rather than just its end-point at the
predicted outcome. The robustness curves of different decision alternatives may cross one another.
When this happens, the analyst may prefer one option over one range of required outcomes, while
preferring the other option over a different range of outcome requirements. In other words, the ana-
lyst may encounter a reversal of preference between one option (e.g. the putative optimum) and a
different option (which is putatively sub-optimal). We have seen this crossing of robustness curves
and consequent potential for preference reversal in the examples.

The methodology that is developed in this paper is to satisfy a performance requirement on the
outcome — rather than trying to optimize the outcome — and to maximize the robustness against
uncertainty. This is a procedural optimization rather than a substantive optimization. The outcome
is the substantive “good” that one seeks, e.g. small probability of large-degree cascading failures.
In the robust-satisficing approach we only attempt to make the substantive outcome good enough.
In contrast to the substantive outcome, the robustness is an aspect of the procedure of reaching
a decision, and the robustness is optimized, not the outcome. Once the decision is made and
implemented, the robustness is of no substantive consequence. Optimizing the robustness and
satisficing the substantive outcome is justified when uncertainty is the main source of vulnerability.
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A Derivation of the Inner Maximum of the Robustness Function in
Eq.(6), Section 3.2

Let M(h) denote the inner maximum in the definition of the robustness function, eq.(6): M(h) =

max
µ∈U(h)

ψ(µ). This is the inner maximum in the definition of ĥ(ψ ≤ m/n, δ) at fixed n and δ. That is, a

plot of h vs. M(h) is identical to a plot of ĥ(ψ ≤ m/n, δ) vs. m/n.3 We now derive an expression for
M(h).

The original message, µ0, is not uncertain (it is known; given).
The uncertainty set U(h) contains all messages µ1 such that |µ1 − µ0| ≤ h.
The uncertainty set U(h) contains all messages µ2 such that |µ2 − µ1| ≤ h.
By the triangle inequality, U(h) contains all messages µ2 such that |µ2 − µ0| ≤ 2h.
By induction, we see that U(h) contains all messages µi such that |µi−µ0| ≤ ih for i = 1, . . . , n.
Furthermore, because the space is compact it contains its limit points, so we can assert that:

max
µ∈U(h)

|µi − µ0| = ih, i = 1, . . . , n (29)

Thus U(h) contains a corrupted message from node i, according to the definition in eq.(2), if and
only if ih > δ or if and only if:

i > δ/h (30)

For any real number x, define dxe as the lowest integer strictly greater than x.
Thus from eq.(30) we see that the lowest index of a node that contains a corrupted message in

U(h) is dδ/he. If dδ/he > n then no node is corrupted.
From eq.(3), the inner maximum in the robustness occurs when `(µ) is the lowest index of a

corrupted message. Thus the inner maximum is:

M(h) =
n+ 1− dδ/he

n
(31)

3This well-known relation is explained in Ben-Haim, 2006, p.81.
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or zero if this is negative. A plot of h vs. M(h) is identical to a plot of ĥ(ψ ≤ m/n, δ) vs. m/n at fixed
δ and n, as mentioned at the start of the proof.

When δ = 0, then dδ/he = 1 and eq.(31) shows that:

M(h) = 1 for all h ≥ 0 (32)

When δ > 0, we proceed as follows to derive an explicit expression for M(h).
From eq.(31), note that:

n ≤ δ

h
implies

⌈
δ

h

⌉
≥ n+ 1 implies M(h) =

0

n
(33)

and

n−i ≤ δ

h
< n−i+1 implies

⌈
δ

h

⌉
= n−i+1 implies M(h) =

n+ 1− (n− i+ 1)

n
=
i

n
, i = 1, 2, . . . , n

(34)
Eqs.(33) and (34) can be re-written more conveniently as:

h ≤ δ

n
implies M(h) =

0

n
(35)

and
δ

n− i+ 1
< h ≤ δ

n− i
implies M(h) =

i

n
, i = 1, 2, . . . , n (36)

These two equations define M(h), which is the inner maximum in the definition of ĥ(ψ ≤ m/n, δ) at
fixed n and fixed δ > 0.

We now point out a general property of the robustness function in this example. From eq.(31)
we can prove:

n < n′ and h ≤ δ =⇒ M(h, n) < M(h, n′) (37)

Proof:
1. h ≤ δ implies that dδ/he > 1 which implies that 1− dδ/he < 0.
2. Define γ = 1− dδ/he, which is negative, and note that M(h, n) = (n+ γ)/n. Thus:

γn′ < γn =⇒ nn′ + γn′ < nn′ + γn =⇒ n+ γ

n
<
n′ + γ

n′
=⇒ M(h, n) < M(h, n′) (38)

3. M(h, n) is the inner maximum in the definition of the robustness function, eq.(6). A plot of
h vs. M(h, n) is identical to a plot of ĥ(m/n, δ, n) vs. m/n. Likewise, a plot of h vs. M(h, n′) is
identical to a plot of ĥ(m/n, δ, n′) vs. m/n. Hence, from the last relation in eq.(38), we conclude:

ĥ(m/n, δ, n) > ĥ(m/n, δ, n′) (39)

B Derivation of the Probability Distribution in Eq.(7), Section 3.3

A cascading failure has fractional size of zero if no nodes in the telephone chain fail. Thus P (ψ =

0) = πn.
A cascading failure has fractional size of i/n, for i = 1, . . . , n, if the first n − i nodes do not

fail, for which the probability is πn−i, and the next node does fail for which the probability is 1 − π.
Failure of nodes is statistically independent, so the probability that ψ = i/n is the product of these
two terms: P (ψ = i/n) = πn−i(1− π) for i = 1, . . . , n.
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The cumulative probability distribution is the sum of terms of the probability distribution:

P

(
ψ ≤ i

n

)
=

i∑
j=0

P

(
ψ =

j

n

)
, i = 0, 1, . . . , n (40)

= πn +
i∑

j=1

πn−j(1− π) (41)

= πn + (1− π)πn
i∑

j=1

(
1

π

)j
(42)

The geometric sum in eq.(42) is:

i∑
j=1

(
1

π

)j
=

(1/π)− (1/π)i+1

1− (1/π)
=

1− πi

πi(1− π)
(43)

Thus eq.(42) becomes:

P

(
ψ ≤ i

n

)
= πn + πn−i(1− πi), i = 0, 1, . . . , n (44)

= πn + πn−i − πn (45)

= πn−i (46)

Eq.(7) is the complement of eq.(46).

C Derivation of the Robustness Function in Eq.(11), Section 3.3

Let m(h) denote the inner maximum in eq.(10). From eq.(7) we see that this inner maximum occurs
when π is as small as possible in the uncertainty set U(h) of eq.(8). This occurs when π = (π̃−sh)+

where we have defined x+ = x if x ≥ 0 and x+ = 0 otherwise. Thus:

m(h) = 1−
[
(π̃ − sh)+

]n−i (47)

The robustness is the greatest value of h at which this expression does not exceed Pc:

1−
[
(π̃ − sh)+

]n−i ≤ Pc (48)

For h ≤ π̃/s, solving this relation at equality yields the robustness in eq.(11). This expression is
no greater than π̃/s so we needn’t consider greater values of h. This completes the derivation of
eq.(11).

D Derivation of the Inner Maximum of the Robustness Function in
Eq.(22), Section 4.3

Let M(h) denote the inner maximum in the definition of the robustness function, eq.(22). This is the
inner maximum in the definition of ĥj(ψ ≤ m/R, δ) at fixed R and δ. That is, a plot of h vs. M(h) is
identical to a plot of ĥj(ψ ≤ m/R, δ) vs. m/R. We now derive an expression for M(h).

The original message, µ0, is not uncertain.
The uncertainty set U j(h) contains messages µc1,j such that |µc1,j − µ0| ≤ wc1,jh.
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The uncertainty set U j(h) contains messages µc2,j such that |µc2,j − µc1,j | ≤ wc2,jh.
By the triangle inequality, U j(h) contains messages µc2,j such that |µc2,j − µ0| ≤ (wc1,j +wc2,j )h.
By induction, we see that U j(h) contains messages µci,j such that |µci,j − µ0| ≤ h

∑i
k=1wck,j for

i = 1, . . . , R.
Furthermore, the uncertainty set contains messages for which this last relation is an equality:

|µci,j − µ0| = h
∑i
k=1wck,j . More specifically, we can assert that:

max
Sj∈Uj(h)

|µci,j − µ0| = h
i∑

k=1

wck,j , i = 1, . . . , R (49)

Thus U j(h) contains a corrupted message from node ci,j in path Cj , according to the definition
in eq.(13), if and only if:

i∑
k=1

wck,j >
δ

h
(50)

As in eq.(18), define `(Sj) as the highest row with a corrupted message in the set of messages Sj .
At horizon of uncertainty h we see that `(Sj) is the smallest integer value of i satisfying eq.(50).
That is:

`(Sj)∑
k=1

wck,j >
δ

h
≥

`(Sj)−1∑
k=1

wck,j (51)

Define `(Sj) = R+ 1 if no node is corrupted in path Cj .
Employing `(Sj) in eq.(18) yields the inner maximum in the definition of the robustness for path

j:

M(h) =
R+ 1− `(Sj)

R
(52)

A plot of h vs. M(h) is identical to a plot of ĥj(ψ ≤ m/R, δ) vs. m/R at fixed δ and R.
M(h) is the inner maximum in the definition of the robustness function for path j. We can re-

formulate eq.(52) to obtain an explicit expression for the robustness of path j as follows.
Define the quantities:

Wk,j =
k∑
i=1

wci,j for k = 1, . . . , R (53)

and define W0,j = 0.
Thus the definition of `(Sj) in eq.(51) becomes:

W`(Sj),j >
δ

h
≥W`(Sj)−1,j (54)

and `(Sj) = R+ 1 if no value of `(Sj) ≤ R satisfies this relation, meaning that no node is corrupted.
When δ = 0, eq.(54) implies that `(Sj) = 1, and eq.(52) implies that:

M(h) = 1 for all h ≥ 0 (55)

Thus the robustness function for path j, when δ = 0, is:

ĥj(ψ, 0) =

 0 , ψ < R
R

∞ , ψ = R
R

(56)
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When δ > 0 we proceed as follows.
If:

δ

h
≥WR,j =⇒ `(Sj) = R+ 1 =⇒ M(h) =

0

R
(57)

If, for some k = 1, . . . , R:

Wk,j >
δ

h
≥Wk−1,j =⇒ `(Sj) = k and M(h) =

R+ 1− k
R

(58)

Eqs.(57) and (58) can be re-written as:

h ≤ δ

WR,j
=⇒ M(h) =

0

R
(59)

δ

Wk,j
< h ≤ δ

Wk−1,j
=⇒ M(h) =

R+ 1− k
R

, k = 1, . . . , R (60)

We can now invert eqs.(59) and (60) to obtain explicit expressions for the robustness of path j:

ĥj(ψ, δ) ≤
δ

WR,j
for ψ =

0

R
(61)

δ

Wk,j
< ĥj(ψ, δ) ≤

δ

Wk−1,j
for ψ =

R+ 1− k
R

, k = 1, . . . , R (62)

As stated in eqs.(61) and (62), the robustness for path j is a step-wise discontinuous function
taking all non-negative real values. It is convenient to identify the values of the robustness function
at its kinks. From the “≤” relations in these equations we can write:

ĥj(ψ, δ) =
δ

Wk−1,j
for ψ =

R+ 1− k
R

, k = 1, . . . , R+ 1 (63)

Define the following change of indices:

m = R+ 1− k for k = 1, . . . , R+ 1 (64)

So:
k = R+ 1−m and ψ =

R+ 1− k
R

=
m

R
for m = 0, 1, . . . , R (65)

Thus eq.(63), the robustness at the kinks, becomes:

ĥj(ψ ≤ m/R, δ) =
δ

WR−m,j
for m = 0, 1, . . . , R (66)

where R and δ are fixed. Note that eq.(66) implies that ĥj(ψ ≤ R/R, δ) =∞ because W0,j = 0.

E Proof of Proposition 1, section 4.3

Proof of proposition 1.
Assertion 1. This derives directly from eqs.(24) and (25).
If m = R then the robustness is infinite for all paths and the assertion is true because all path

robustnesses are the same.
If m < R then eq.(25) shows that the path with lowest robustness is the path whose average

uncertainty weight of the first R −m nodes is maximal. Eq.(24) then shows that this is the overall
network robustness.
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Assertion 2. We define the following two quantities. Let (i?, j?) denote the coordinates of the
node with maximal uncertainty weight from among all nodes in the network:

(i?, j?) = arg max
1≤j≤NR

max
1≤i≤R

wci,j (67)

Let jm denote the index of the path whose average uncertainty weight of the first R −m nodes is
maximal, recalling that m < R:

jm = arg max
1≤j≤NR

R−m∑
i=1

wci,j (68)

It is clear that many choices of positive uncertainty weights of nodes in the network allow j? to differ
from jm.

F Proof of Proposition 2, Section 4.5

Proof of assertion 1. It is sufficient to prove the proposition for the robustness values at the kinks,
because ĥj(ψ ≤ m/R, δ) is step-wise discontinuous at these kinks.

From the expression for the robustness at a kink, eq.(66) in appendix D, we can write:

ĥj(ψ ≤ m/R, δ) =
δ

R−m∑
i=1

wci,j

, m = 1, . . . , R− 1 (69)

If m = R then the denominator of ĥj(ψ ≤ R/R, δ) in eq.(69) is zero so the robustness is infinite:
ĥj(ψ ≤ R/R, δ) = ∞. But because R < R′, ĥj(ψ ≤ m/R′, δ) is finite, which completes the proof for
this case.

If m < R the the denominator of eq.(69) contains R − m strictly positive terms. At fixed m,
this denominator strictly decreases as R decreases. Thus ĥj(ψ ≤ m/R, δ) strictly increases as R
decreases, which completes the proof.

Proof of assertion 2. It is sufficient to prove the proposition for the robustness values at the
kinks, because ĥj(ψ ≤ m/R, δ) is step-wise discontinuous at these kinks.

The expression for the robustness at a kink, eq.(66) in appendix D, can be written as eq.(69)
in the proof of the first assertion in proposition 2. This expression is independent of the number of
branches at each node, which completes the proof.

Proof of assertion 3. It is sufficient to prove the proposition for the robustness values at the
kinks, because ĥj(ψ ≤ m/R, δ) is step-wise discontinuous at these kinks.

The expression for the robustness at a kink, eq.(66) in appendix D, can be written as eq.(69) in
the proof of the first assertion in proposition 2. The denominator of eq.(69) contains R −m strictly
positive terms.

If m = R then the denominator of ĥj(ψ ≤ R/R, δ) in eq.(69) is zero so the robustness is infinite:
ĥj(ψ ≤ R/R, δ) = ∞. But because n < m, ĥj(ψ ≤ n/R, δ) is finite, which completes the proof for
this case.

If m < R then, at fixed R, this denominator strictly decreases as m increases. Thus ĥj(ψ =

m/R, δ) strictly increases as m increases, which completes the proof.
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