Info-Gap Theory Concepts and Applications

Yakov Ben-Haim Technion Israel Institute of Technology

Outline

Risk or Uncertainty?

Probability is powerful, but ignorance is not probabilistic

Uncertainty and the optimization imperative

- Limits of prediction and outcome-optimization
- Robust satisficing

Time to Recovery: Innovation dilemma

Optimal monitoring and surveillance: A paradox

Risk and Uncertainty

Probabilistic risk or Knightian "true uncertainty"

Probabilistic Risk

Probability Consequence

Stochastic process Drought

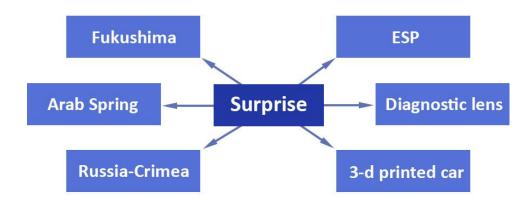
Actuarial tables Industrial accident

Historical data Tsunami

Quality control data Faulty air filters

Sociological data Deception, scam

Risk is:


- Structured: known event space
- Modeled with probability
- Manageable (but still risky)

Frank Knight's "true uncertainty"

"The uncertainties which persist ... are uninsurable

> because there is no objective measure of the probability".

Wheeler's Island

"We live on an island of knowledge surrounded by a sea of ignorance. As our island of knowledge grows, so does the shore of our ignorance." John A. Wheeler

Discovery

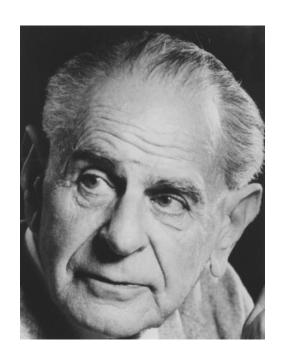
- America
- Nuclear fission
- O Martians (not yet?)

- **Discovery**
- Invention/Innovation
 - Printing press: material invention.
 - Ecological responsibility: conceptual innovation.
 - French revolution: social innovation.

- **Discovery**
- Invention/Innovation
- S Surprise (Asymmetric uncertainty)
 - Ambush
 - Competitor's innovation
 - Natural catastrophe

- Discovery
- Invention/Innovation
- S Surprise (Asymmetric uncertainty)

What's the next D I or S ???


Knightian uncertainty:

- Unstructured: unknown event space.
- Indeterminate: no laws.
- Barely manageable.

Shackle-Popper

Indeterminism

GLS Shackle, 1903-1992

Karl Popper, 1902-1994

Shackle-Popper Indeterminism

Intelligence:

What people know, influences how they behave.

Discovery:

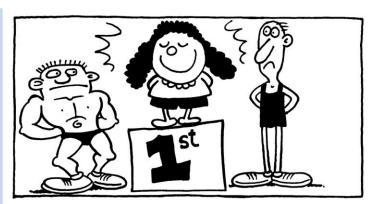
What will be discovered tomorrow can't be known today.

Implies

Indeterminism:

Tomorrow's behavior can't be fully modelled today.

- Info-gaps, indeterminism: unpredictable.
- Ignorance is not probabilistic.


Uncertainty and the

Optimization Imperative

Doing your best:

What does that mean?

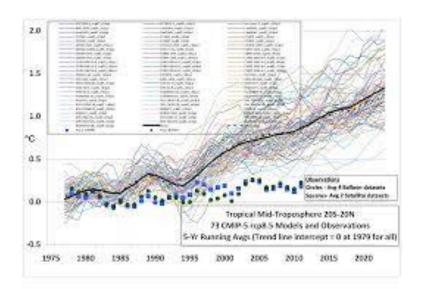
- Outcome optimization.
- Procedural optimization.

Implications for decision making: Robust satisficing.

Doing Your Best

Substantive outcome optimization:

- Predict outcomes of available options.
- Select predicted best option.



Doing Your Best

Substantive outcome optimization.

Useful under risk:

- Structured uncertainty.
- Reliable probabilistic predictions.

Doing Your Best

Substantive outcome optimization:

Useful under risk.

Not useful (irresponsible?) under uncertainty.

- Unstructured uncertainty.
- Unreliable predictions.

Questions

What do we (not) know?

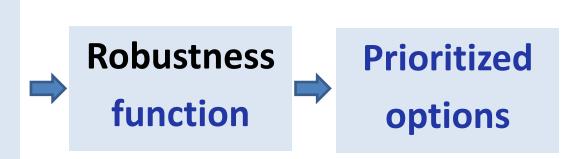
Robustness questions:

- What is an essential outcome?
- How to be robust to surprise?

Opportuneness questions:

- What is a windfall outcome?
- How to exploit opportunities?
- How to prioritize decision options?

What are the trade offs?



Answers

Robustness answer:

System model **Outcome** requirement **Uncertainty model**

Opportuneness answer:

System model **Outcome** aspiration **Uncertainty model**

Prioritized Opportuneness function options

Two questions for decision makers:

- 1. What are our goals?
- 2. How much error/surprise can we tolerate?

Two questions for decision makers:

- 1. What are our goals?
- 2. How much error/surprise can we tolerate?

1. Satisficing: Achieving critical outcomes.

- Essential goals.
- Worst acceptable outcomes.
- Modest or ambitious.

Two questions for decision makers:

- 1. What are our goals?
- 2. How much error/surprise can we tolerate?

1. Satisficing: Achieving critical outcomes.

2. Robustness:

- Immunity to ignorance.
- Greatest tolerable error or surprise.

Two questions for decision makers:

- 1. What are our goals?
- 2. How much error/surprise can we tolerate?
- 1. Satisficing: Achieving critical outcomes.
- 2. Robustness: Greatest tolerable error.

Optimize robustness; satisfice goals:

Procedural (not substantive) optimization.

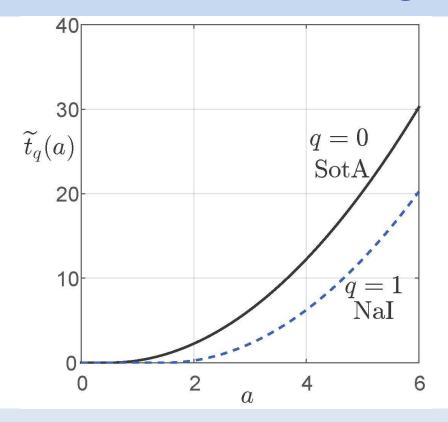
Time to recovery (TTR) after disruption:

- Building after earthquake.
- Energy distribution network after failure.
- Micro-sensor after shock load.
- Etc.

Task: Recover critical functions in specified time.

Challenge: Uncertainties (info-gaps).

Formulation: Innovation dilemma.


- Choose between 2 design concepts:
 - \circ State of the art (SotA, q=0).
 - \circ New and innovative (NaI, q=1).
- System model: TTR, t(a,q), to load a for system q.
- Outcome requirement and aspiration:

$$t(a,q) < tc$$
, $t(a,q) < tw (<< tc)$

Info-gaps:

- Parameter uncertainty: value of a.
- Functional uncertainty: shape of t(a,q).

Estimated TTR functions for 2 designs.

Putative preference: Nal predicted better than SotA.

What about uncertainty in load a & TTR func t(a,q)?

Info-gap:

Disparity between what we do know (on a & t(a,q)) and what we need to know in order to make responsible decision (SotA or Nal).

About the load, a:

Known estimated value. Unknown fractional error.

About the TTR function, t(a,q):

- Known estimated form. Unknown fractional error.
- Nal more uncertain than SotA.

Info-gap model of uncertain a and t(q,a):

$$\mathcal{U}(h) = \begin{cases} a, t_q(a) : t_q(a) \ge 0, & |t_q(a) - \widetilde{t}_q(a)| \le hw_q \widetilde{t}_q(a), \ q = 0, 1. \end{cases}$$

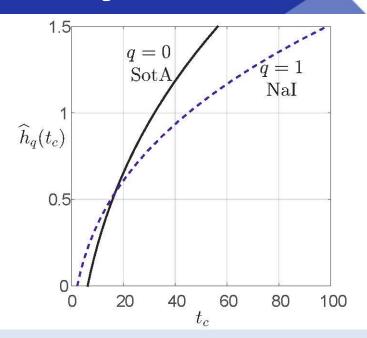
$$a > 0, \ \left| \frac{a - \widetilde{a}}{s} \right| \le h$$
, $h \ge 0$ (18)

- Non-prob: unbounded family of nested sets.
- Horizon of uncertainty, h, unknown.
- No known worst case.
- Axioms: Contraction and Nesting.

Immunity functions.

Robustness: immunity against failure.

Maximum tolerable uncertainty.


$$\widehat{h}_q(t_c) = \max \left\{ h : \left(\max_{t, a \in \mathcal{U}(h)} t_q \right) \le t_c \right\}$$
 (21)

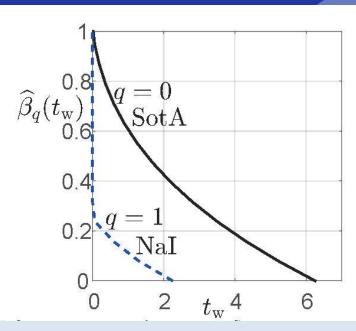
Opportuneness: immunity against windfall.

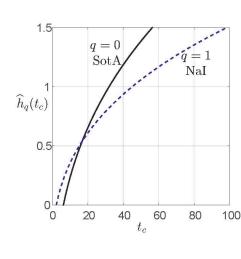
Minimum necessary uncertainty.

$$\widehat{\beta}_{q}(t_{\mathbf{w}}) = \min \left\{ h : \left(\min_{t, a \in \mathcal{U}(h)} t_{q} \right) \le t_{\mathbf{w}} \right\}$$
 (22)

Robustness vs. Requirement

Trade off: better TTR means worse robustness.


Zeroing: Predicted TTR has zero robustness.


Preference reversal:

- Nal preferred at low TTR. SotA preferred at hi TTR.
- Resolution of innovation dilemma.

Opportuneness VS.

Aspiration

Trade off: wonderful TTR needs more uncertainty.

Zeroing: Predicted TTR possible without uncertainty.

No preference reversal:

- No crossing opportuneness curves.
- Nal more uncertain and more opportune.

Time To Recovery: Summary

Task: Recover critical functions in specified time.

Info-gaps:

- Parameter uncertainty: value of a.
- Functional uncertainty: shape of t(a,q).
- Innovation dilemma: Nal vs. SotA.
- Robustness: maximum tolerable uncertainty.
- Opportuneness: minimum required uncertainty.
- Trade off, zeroing: robustness and opportuneness.

Optimal monitoring and surveillance:

A paradox of learning

Learning:

- Discover new knowledge.
- Not: learn French or Newtonian Physics.

Optimal learning:

Min time, max quantity, min cost, max quality...

Monitoring and surveillance as learning:

- New failure mechanism emerging? Where? What?...
- Not: does this firm use that amount of power?

Optimal Learning: A Paradox

- Discover & prevent new failure with max effectivity.
- Range of design alternatives with fixed resources:
 - Extensive research: more knowledge, but less impact.
 - Limited research: less knowledge, but more impact.
- Optimal research amount depends on failure mechanism.
- Failure mechanism is unknown.
- Resolution: Satisfice effectivity. Maximize robustness.
- Procedural (not substantive) optimization.
- Alternatives: Optimal adaptive or stochastic learning?
- Same paradox of optimal learning.
- Same resolution: robustly satisfice the design of the learning.

Summing Up

Risk or Uncertainty:

- Probabilistic risk, Knightian uncertainty (info-gaps).
- Shackle-Popper indeterminism.

Substantive outcome optimization:

Useful under risk, not under uncertainty.

Robust satisficing: Optimize robustness; satisfice goals.

Procedural (not substantive) optimization.

Opportune windfalling: use propitious uncertainty.

Time to recovery: Innovation dilemma.

Optimal monitoring and surveillance: A paradox

Questions?

