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Simulating the dynamics of wind turbine blades:
part II, model validation and uncertainty quantification
Kendra L. Van Buren1, Mark G. Mollineaux2, François M. Hemez3 and Sezer Atamturktur1

1 Department of Civil Engineering, Clemson University, Lowry Hall, Box 340911, Clemson, South Carolina 29634-0911, USA
2 Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Room 314, Mail Code 4020, Stanford,

California 94305, USA
3 Los Alamos National Laboratory, XTD-Division (XTD-3), Mail Stop T087, Los Alamos, New Mexico 87545, USA

ABSTRACT

Verification and validation (V&V) offers the potential to play an indispensable role in the development of credible models
for the simulation of wind turbines. This paper highlights the development of a three-dimensional finite element model
of the CX-100 wind turbine blade. The scientific hypothesis that we wish to confirm by applying V&V activities is
that it is possible to develop a fast-running model capable of predicting the low-order vibration dynamics with sufficient
accuracy. A computationally efficient model is achieved by segmenting the geometry of the blade into six sections only.
It is further assumed that each cross section can be homogenized with isotropic material properties. The main objectives
of V&V activities deployed are to, first, assess the extent to which these assumptions are justified and, second, to quantify
the resulting prediction uncertainty. Designs of computer experiments are analyzed to understand the effects of parameter
uncertainty and identify the significant sensitivities. A calibration of model parameters to natural frequencies predicted by
the simplified model is performed in two steps with the use of, first, a free–free configuration of the blade and, second,
a fixed–free configuration. This two-step approach is convenient to decouple the material properties from parameters of
the model that describe the boundary condition. Here, calibration is not formulated as an optimization problem. Instead,
it is viewed as a problem of inference uncertainty quantification where measurements are used to learn the uncertainty
of model parameters. Gaussian process models, statistical tests and Markov chain Monte Carlo sampling are combined
to explore the (true but unknown) joint probability distribution of parameters that, when sampled, produces bounds of
prediction uncertainty that are consistent with the experimental variability. An independent validation assessment follows
the calibration and is applied to mode shape vectors. Despite the identification of isolated issues with the simulation code
and model developed, the overarching conclusion is that the modeling strategy is sound and leads to an accurate-enough,
fast-running simulation of blade dynamics. This publication is Part II of a two-part effort that highlights the V&V steps
required to develop a robust model of a wind turbine blade, where Part I emphasizes code verification and the quantification
of numerical uncertainty. Approved for unlimited public release on August 26, 2011, LA-UR-11-4997. Copyright © 2012
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Wind energy research is being pursued in the USA as a viable alternative to provide a major amount of installed electrical
power, as part of the ‘20% by 2030’ initiative by the US Department of Energy.1 However, for wind energy to become a
mainstay of energy needs, its cost must first be reduced drastically. The blades are responsible for only 10–15% of the cost
of the wind turbine system;2 however, damage to the blades can result in rotor instability that leads to damage of the
entire wind turbine system.3,4 To efficiently design for the next generation of wind turbines, it is crucial to understand the
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dynamics of wind turbine blades, which capture all of the kinetic energy transported by the surrounding flow of wind, and
improve the reliability of power generation from wind plants.5 Better understanding of the wind turbine blades is essential,
since the blades carry most of the structural loads that become imparted on the entire wind turbine. Better models would
make more accurate predictions of performance, which would mitigate the operation and maintenance expenses associated
with wind energy. These expenses currently start as low as $5/MWh but climb to costs as high as $20/MWh over a 20 year
evolution of service.6

Modeling and simulation (M&S) offers a quicker, safer and more economical alternative to the conventional cycle of
designing, prototyping and testing to study wind turbine blade behavior.7 The versatility of modeling can be used to predict
the response to many complex load cases,8 but only idealized loads can usually be implemented in full-scale experiments.9

In addition, parametric studies of damage to wind turbine blades can be investigated in an economical way through M&S,
whereas the feasibility of such experimental campaigns would be limited because of the cost and safety implications.

Because of demands for faster turn-around times and the, sometimes, limited access to computing resources, there is a
growing need to develop simplified ‘engineering’ models that can keep parametric and calibration studies to a manageable
size.10 It is also expensive, both in terms of memory management and time to solution, to couple a computational fluid
dynamics (CFD) code to flexible dynamics models of the blades and, potentially, models of structural damage, to develop
credible simulations of entire wind plants.11 One approach to reduce this computational burden is to simplify the flexible
dynamics of the wind turbine blade to speed up the calculations without, to the extent possible, sacrificing the prediction
accuracy. The study presented in this paper, together with a companion publication, demonstrates the application of
verification and validation (V&V) technology to achieve these goals.12

Our objective is to develop a structural model that, while simplified as much as possible, still captures the dynamics
of interest. The V&V activities deployed in the companion paper (Mollineaux et al.12) and in this paper support essential
steps of the model development process to guarantee that the simplifications introduced are justified for the intended
purpose. V&V also serves the purpose of quantifying the experimental variability and numerical uncertainty (discussed in
Mollineaux et al.12) and the model parameter uncertainty (discussed in this paper).

As explained in Mollineaux et al.12, the structure investigated is the 9 m, all-composite CX-100 blade designed at the
Sandia National Laboratories. The finite element (FE) software is ANSYS version 12.1. The simplified model is developed
on the basis of an as-accurate-as-possible description of the geometry obtained from design specifications. However, imple-
mentation of the materials relies on a strong assumption: the cross-sectional areas for the blade are modeled as smeared
and isotropic material properties instead of modeling the multiple composite layers embedded in the epoxy matrix. The
overarching goal of this effort is to demonstrate the extent to which V&V can be integrated to the model development of
a simplified yet validated FE model, which delivers an acceptable level of predictive capability. Validated models that
satisfy given time-to-solution requirements for the application of interest provide a competitive advantage.

Developing a predictive capability motivates the need to quantify the uncertainty introduced by assumptions imposed
during the development of an FE model. Understanding the approximate behavior of a model renders it imperative to take
into consideration all sources of uncertainty, as discussed in Section 2. Section 3 provides a cursory overview of the FE
model of the CX-100 blade. (See Mollineaux et al.12 for an in-depth discussion.) Section 4 discusses three V&V activities:
the propagation of uncertainty from input parameters of the FE model to output predictions, sensitivity analysis and effect
screening, and model calibration. These investigations are applied to low-order resonant frequencies of the blade according
to a two-step approach. The response of the free–free model, followed by the fixed–free model, is evaluated, in an effort
to decouple our understanding of material properties from that of model parameters that represent the boundary condition
compliance. Section 5 presents an independent validation assessment on the basis of the ability of the calibrated model
to correlate predicted and measured mode shape deflections. The implications and limitations of this study are discussed
in Section 6.

2. REVIEW OF PERTINENT LITERATURE

Assumptions and simplifications, which are emphasized to only be able to provide an approximation of reality, are regularly
imposed in numerical models. For example, beam property extraction methods, which require low computational cost and
can be used for fast-running calculations, have been developed.13 However, one study attempting to model a wind turbine
system found that neglecting the effect of damping produced predictions with low goodness of fit to the experimental
data.14 This study, along with similar observations from other disciplines, suggests that not accounting for the uncertainty
introduced by the simplifications and modeling assumptions can have a degrading effect on the quality of model predictions.

Another consideration is the relationship between goodness of fit to test data and the predictive capability of a model.
It can be shown that fidelity to data, robustness to assumptions and predictive capability are antagonistic attributes of any
family of models.15 This can be described using the case of over-fitting, which happens when a model produces accurate
predictions for configurations to which it was calibrated. But this may come at the cost of reducing its predictive capability,
that is, the accuracy of its predictions when attempting to simulate other, non-tested configurations. Understanding these
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trade-offs is important for the development of robust CFD and FE models because it is important that models are robust to
sources of variability, such as the significant variability between wind turbine blades that will result in different levels of
structural response.16

It is also important to account for the uncertainty associated with experimental procedures. The vibration testing of an
article in a free–free configuration can often be affected by the positioning of the straps, mass loading of the accelerometers
and orientation of the test specimen.16,17 The free–free boundary condition is, on the other hand, trivial to simulate
numerically. When free–free is not an option, proper modeling of the boundary condition becomes necessary to ensure that
the predictions of structural response can be compared with measurements. Modeling a fixed–free boundary condition is a
possibility, as long as the non-ideal compliance of the attachment setup can be accounted for, if it is believed important to do
so. An unknown, boundary compliance can also significantly influence what is observed during a vibration test. To mitigate
the uncertainty associated with a fixed-boundary compliance, studies originating at Sandia National Laboratories propose a
new setup for the modal analysis of wind turbine blades, in which a 9 m blade is mounted vertically on a seismic mass and
airbag system.10,18 This type of boundary condition is designed so that its characteristics would be well characterized and
modeled accurately in the simulation of the structural model. The setup assures that the fixity of the blade to the seismic
mass is rigid and that there is a soft boundary condition when placed on the airbags, which can be characterized by stiffness
properties. In a further investigation of boundary condition effects, the experimental modal analysis of a stationary wind
turbine system is performed.19 Blade and tower responses to impact hammer testing are characterized. The mode shapes
identified during these vibration tests demonstrate that there is significant coupling between the different blades and tower,
confirming that the tower of a wind turbine system does not behave as a rigid body.

Recently, the development of FE models has gained acceptance for routine use in the study of wind turbine blades.
Another common practice is to perform calibration against experimental data as an integral part of model development. The
work by Bechly and Clausen20 provides an early attempt to utilize FE modeling in the design and analysis of wind turbine
blades by using shell and solid elements. The study researched the optimal design of a 2:5 m long blade, and experimental
data from fabricated blades were analyzed to validate predictions of the FE model. Another early attempt used free–
free modal data collected from a 4 m section of a blade to calibrate an FE model.21 Accuracy was improved by collecting
additional measurements of the geometry of the blade and increasing the resolution of the simulation (higher mesh density).
It was found that, with the use of these approaches, the number of assumptions needed to model the blade section could be
reduced. Other studies have since investigated the use of M&S to study the behavior of wind turbine blades, owing to the
versatility of numerical models.22,23 The current study builds on previous research efforts to model wind turbine blades
and places an emphasis on the use of V&V activities to establish the predictive capability of numerical simulations.

3. DEVELOPMENT OF THE SIMPLIFIED FE MODEL

This section provides a cursory overview of the FE model of the CX-100 blade. The reader is referred to Mollineaux et al.12

for details about the model development and quantification of solution (or numerical) uncertainty. The brief explanation
provided here is useful to better understand the uncertainty quantification, sensitivity analysis and calibration steps
discussed in Section 4.

The model of the CX-100 wind turbine blade is developed with the NuMAD pre-processor and imported into the
ANSYS software. The blade is 9 m long, and its geometry is imported from another, high-fidelity FE model with as
few simplifications as possible. Solution verification, which utilizes the results of a mesh refinement study, is performed,
to quantify the overall level of numerical uncertainty due to mesh discretization. A discretization based on an element size
of �x D 8 cm is deemed appropriate because it provides an overall solution uncertainty of 1.78%. This is comparable
with the maximum level of experimental variability obtained by replicating the modal tests, where the ˙3� bounds of
uncertainty are estimated to be 1.62%. The other criterion adopted to select the level of resolution is to be able to perform
a modal extraction in less than 60 s on a PC-based computing platform (Intel single-core, 2 GHz processor, 4 GB memory,
Windows 7 operating system), which is a constraint that needs to be met in order to make parametric studies feasible.
(See Mollineaux et al.20 for details.) The mesh arrived at counts 3070 elements and computes the modal solution in less
than 60 s.

To simplify the parameterization of the model, only six independent sections are defined, compared with high-fidelity
models that require hundreds of sections. Most of them are illustrated in Figure 1. They are the shear web, root, spar cap,
trailing edge, leading edge with balsa and leading edge without balsa. The shear web runs along most of the length of the
blade, and it is not shown in the figure because of its location on the inside. Within each one of these sections, an isotropic
material is defined with smeared cross-sectional properties. The validity of this assumption is explored in Section 4 to
assess the credibility of the simulation.

Modal testing of the CX-100 wind turbine blade is carried out under free–free and fixed–free boundary conditions at the
Los Alamos National Laboratory.12,17 Roving impact hammer tests are performed to amass modal data at three locations
with uniaxial accelerometers. A linear average is used with five repeats and a 150 Hz sampling frequency. The acceleration
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Figure 1. Illustration of the ANSYS model showing different sections of the blade.

Table I. System identification of the CX-100 blade with free–free modal testing.

Type of mode Mean statistic (Hz) Standard deviation (Hz) Variabilitya (%)

First flapwise bending 7.617 0.004 0.06
Second flapwise bending 20.167 0.055 0.27
Third flapwise bending 32.256 0.051 0.16

aThe coefficient of variance is defined as the standard deviation divided by the mean. It is based on 27 replicates for free–free
vibration testing.

Table II. System identification of the CX-100 blade with fixed–free modal testing.

Type of mode Mean statistic (Hz) Standard deviation (Hz) Variabilitya (%)

First flapwise bending 3.221 0.008 0.24
Second flapwise bending 8.824 0.011 0.12
Third flapwise bending 19.204 0.020 0.11

aThe coefficient of variance is defined as the standard deviation divided by the mean. It is based on 27 replicates for fixed–free
vibration testing.

response is measured for 11 s, during which the response of the blade is attenuated. This procedure negates the use of a
window function. The levels of experimental variability are quantified and listed in Tables I and II for the free–free and
fixed–free boundary conditions. The observed variability is attributed to potential calibration errors, operator-to-operator
variability and the inability to identically repeat the experiments on the same test specimen of the CX-100 blade. The fact
that it does not account for any specimen-to-specimen or test setup variability explains the overall low levels of uncertainty
observed during this campaign of vibration testing.

4. PROPAGATION OF UNCERTAINTY, SENSITIVITY ANALYSIS
AND CALIBRATION

Section 4 presents results of the V&V study. The discussion starts by formulating questions about specific aspects
of the predictive capability being developed. The main contribution of this publication is to demonstrate how V&V
activities, such as mesh refinement or effect screening, can be integrated to model development to start answering those
questions. Simulations are analyzed first for free–free vibrations of the CX-100 blade (Sections 4.2 and 4.3). The fixed–
free configuration is analyzed next to decouple the parameterization of the boundary condition from the description of
homogenized material properties in the model (Sections 4.4 and 4.5).

4.1. Specific questions about the predictive capability

We would like to answer the following four questions regarding specific aspects of the predictive capability provided by
the fast-running engineering model of the CX-100 blade.

� Question A: What is an appropriate level of mesh resolution for the calculations?
� Question B: What are the mechanisms that most influence the variability of predictions?
� Question C: Can measurements be used to reduce parametric uncertainty in the model?
� Question D: Does the model provide accurate-enough predictions of mode shapes?
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Question A is answered in Mollineaux et al.12 where it is shown how a mesh refinement study can be combined to an
upper-bound estimate of solution uncertainty. It is found, as noted in Section 3, that a discretization of �x D 8 cm leads to
an overall solution uncertainty of 1.78%. Running the modal analysis at this level of resolution provides a time to solution
of 60 s, approximately, which is fast enough to enable parametric studies with thousands of runs.

Question B promotes understanding of what controls the prediction variability. By learning which parameters are most
influential to explain how the predictions change, one can control them in order to reduce the prediction uncertainty. It is
equally important to learn which parameters do not control the prediction uncertainty because attempting to better control
a non-influential effect would be both inefficient and a waste of important resources. The prediction variability observed
from a design of experiments (DOE) is decomposed into separate effects to answer Question B.

Recall that the model is parameterized into only six sections and that each section is described by homogenized material
properties. The resulting idealization is anything but high fidelity since the real structure involves a multi-layered composite
material. Our point of view is that there is no such thing as ‘true’ values of these material properties. What becomes essential
is to reduce as much as possible the initially large lack of knowledge of these fictitious parameters, which is the subject of
Question C. The vibration measurements are used to search for values that, while they remain uncertain, lead to predictions
that better match the experimental data.

Finally, Question D exemplifies the validation assessment. Whereas the propagation of uncertainty, sensitivity analysis
and calibration are applied to frequency predictions, validity of the simplified model is assessed using mode shape
predictions. The rationale is to investigate predictions that have not been exploited for calibration, hence promoting the
use of separate datasets between development and validation of the model. Another reason for this choice is that accurate
predictions of mode shape deflections are important to couple the structural dynamics and CFD-based simulation of
flow around the turbine. It may, arguably, be even more important than predicting the resonant frequencies accurately.
Question D is answered through conventional test–analysis correlation (TAC).

4.2. Propagation of uncertainty and sensitivity analysis of the free–free configuration

As noted previously, it is important to assess what controls the prediction variability. Understanding which parameters,
or groups of parameters, are most influential allows for the elimination of the insensitive ones. It promotes computational
savings and a more efficient calibration.

Following the mesh discretization studied in Mollineaux et al.12, the next dominant lack of knowledge in the problem
comes from the idealization of the composite material as uniform and isotropic. Material properties (modulus of elasticity,
E, and density, �) are approximated using the rule of mixtures for composites, which provides ranges ŒEMinIEMax�

and Œ�MinI �Max� for each parameter.24 To simulate the free–free vibrations, the model is parameterized using a total of
12 parameters, which are the modulus of elasticity (E) and density (�) for the six sections of the blade.

The first step of the analysis is to propagate uncertainty from the 12 parameters to resonant frequency predictions.
A two-level, full-factorial DOE is used, whereby all combinations of lower and upper bounds for the 12 parameters are
executed. The design results in a total of 212 D 4096 evaluations of the FE model. Figure 2 compares predictions from
these 4096 runs to the mean statistic of measured frequencies for the first mode. The fact that measurements fall within the
range of frequencies predicted by the DOE is confirmation that the model captures the first flapwise bending reasonably
well. However, the prediction uncertainty obtained by propagating the initial ranges of 12 parameters is quite significant
relative to the experimental variability. (Recall � D 0:004 Hz only from Table I.)

Figure 2. Comparison of first-mode simulation uncertainty and measured frequency.
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The second step is to understand which parameters, or combinations of parameters, cause the large uncertainty illustrated
in Figure 2. Our hypothesis is that only a few parameters, out of the 12 considered, are statistically significant to explain
how the predictions vary. Two additional DOEs are analyzed to confirm, or refute, this hypothesis. A Latin hypercube
sample with 1000 runs is analyzed first to identify the potentially non-significant parameters.25 From an analysis of variance
(ANOVA), the number of significant parameters is reduced from 12 to 8.26 This first design is supplemented by the analysis
of a two-level, full-factorial DOE that requires another 28 D 256 runs, to further screen the significant parameters down to
five only.

A tool that originated from high-consequence studies on nuclear reactor safety, known as the Phenomenon Identification
and Ranking Table (PIRT), is used to screen the parameters.27 The PIRT provided in Table III organizes results obtained
with the two-level, full-factorial design. The average variability of frequency predictions for the first three flapwise bending
modes is analyzed using a main-effect ANOVA. ‘Main effect’ means that the study is restricted to the influence of varying
one parameter at a time, without considering potential interactions or higher-order effects. Large values of theR2 composite
statistics listed in Table III identify the most significant main effects.

Because the 12 parameters considered are unknown, the uncertainty column of the PIRT is omitted in Table III. The lower
and upper bounds listed indicate the ranges exercised in the full-factorial design. Values of the main-effect R2 statistics
are scaled to 100%. The PIRT indicates that five of the 12 parameters control nearly 95% of the main-effect variability of
frequency predictions. These five parameters are kept for further study, whereas the others are eliminated. The two DOEs—
(i) the two-level, full-factorial design with 12 parameters and (ii) the Latin hypercube sample design with 12 parameters,
then two-level, full-factorial design with eight parameters—arrive at the same list of five most influential parameters. This
comparison between two approaches provides evidence that the statistically most significant parameters are identified and
that this result is independent of how the screening is performed.

After the initial 12 parameters are screened, an initial TAC of mode shapes is performed to ensure that (i) the
experimental and numerical mode shapes are paired appropriately and (ii) mode swapping does not occur as the material
properties are perturbed. A two-level, full-factorial DOE is analyzed to exercise all combinations of lower and upper
bounds for the five influential parameters identified in Table III. The mode shape deflections are obtained for these 25 D 32
combinations and plotted in Figure 3. Although varying the model parameters between the lower and upper bounds

Table III. PIRT developed for main-effect screening of 12 FE model parameters.

Factor Description Lower bound Upper bound R2 values Keep?

A Shear web, � 650.46 kg m�3 1084.10 kg m�3 0.29% No
B Root, � 2071.56 kg m�3 3452.60 kg m�3 0.37% No
C Lower-edge balsa, � 1025.05 kg m�3 1708.42 kg m�3 0.32% No
D Spar cap, � 1900.44 kg m�3 3167.40 kg m�3 1.11% No
E Trailing edge, � 411.90 kg m�3 686.50 kg m�3 9.35% Yes
F Leading edge, � 1287.30 kg m�3 2145.50 kg m�3 3.03% Yes
G Shear web, E 0.99 MPa 2.97 MPa 1.74% No
H Root, E 18.01 MPa 54.02 MPa 0.00% No
I Lower-edge balsa, E 4.36 MPa 13.08 MPa 1.74% No
J Spar cap, E 31.04 MPa 93.12 MPa 65.95% Yes
K Trailing edge, E 0.92 MPa 2.75 MPa 9.85% Yes
L Leading edge, E 10.30 MPa 30.91 MPa 6.25% Yes

Column 5 lists composite R2 statistics obtained for main-effect analysis by averaging individual R2 for predictions of resonant
frequencies of the first three flapwise bending modes (modes 1, 3 and 4).

Figure 3. TAC of mode shape deflections used for the five-parameter study.
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Table IV. R2 statistics for total-effect analysis of five parameters of the FE model.

R2 statistics of total effect

FE model parameter Parameter lower bound Parameter upper bound Mode 1 Mode 3 Mode 4

Trailing edge, � 411.90 kg m�3 686.50 kg m�3 3.46% 10.15% 15.95%
Leading edge, � 1287.30 kg m�3 2145.50 kg m�3 4.63% 9.68% 7.47%
Spar cap, E 31.04 MPa 93.12 MPa 28.57% 28.50% 42.44%
Trailing edge, E 0.92 MPa 2.75 MPa 0.08% 6.39% 2.18%
Leading edge, E 10.30 MPa 30.91 MPa 12.58% 32.69% 28.90%

generates significant mode shape variability, these shapes consistently correspond to the flapping deflection, and mode
swapping does not occur because of parameter variations.

With a confirmation that the modal pairing is unchanged within the ranges of variation of the five most influential
parameters, a three-level, full factorial DOE is analyzed on the basis of 35 D 243 runs. Each parameter is set to a lower
bound, nominal value (mid-range) or an upper bound as listed in Table IV. Three levels are used such that the main effects,
linear interactions and quadratic effects can all be captured without significant statistical aliasing. This last design generates
the training data needed to develop a fast-running, statistical emulator for each resonant frequency.

A final sensitivity analysis is performed using the training data, with results given in Table IV. The table lists the
total-influence ANOVA statistics for each bending frequency considered. The total effect includes the main effect and all
higher-order interactions that involve a given parameter. This analysis confirms that all the parameters kept exercise some
degree of influence on the first three flapwise bending modes of the CX-100 blade model.

4.3. Inference uncertainty quantification of the free–free configuration

At this point, uncertainty has been propagated forward through the simulation of blade vibration and the important
parameters that control the prediction variability have been learned. This answers Question B of Section 4.1. Even though
the main sources of uncertainty have been reduced to five material properties, acceptable ranges for these parameters
remain largely unknown. The next step addresses Question C by attempting to reduce this lack of knowledge. Vibration
measurements of the free–free configuration are used to explore settings of the homogenized material properties that lead
to predictions that better match the experimental data.

This question could be formulated as a deterministic optimization that searches for the ‘best’ combination of the
five material properties. Instead of a deterministic calibration, Question C is addressed through inference uncertainty
quantification, which explores the posterior probability distribution of the five parameters. By definition, the posterior is
the probability law that leads to predictions of resonant frequencies that are statistically consistent with the experimental
data. The challenge is that the posterior function is unknown and must be explored using a Markov chain Monte Carlo
(MCMC) algorithm, which turns out to be computationally expensive. Replacing the FE model by fast-running, statistical
emulators developed with Gaussian process models (GPMs) alleviates this difficulty. A GPM is simply a probability
distribution whose hyper-parameters, such as mean value and correlation structure, have been trained using the 243
simulation runs of Section 4.2. Predictions are then obtained by sampling the probability law instead of analyzing the
computationally expensive FE model.

In the absence of qualitative data about the material, a uniform prior distribution is assumed in the formulation of
the GPM. The computational procedure exercised in this study relies on a methodology first proposed in a univariate
formulation and later expanded into the multivariate formulation.28,29

Table V summarizes the inference results. Columns 2–4 summarize the prior uncertainty, that is, the ranges within
which the five material properties are varied in the full-factorial design. This is prior to any comparison between numerical

Table V. Comparison of prior and posterior uncertainty of five FE model parameters.

Prior uncertainty Posterior uncertainty

Input factor FE model parameter Lower Upper Range Mean Standard deviation ˙2� range

E Trailing edge, � (kg m�3) 411.90 686.50 274.60 607.09 61.36 245.44
F Leading edge, � (kg m�3) 1287.30 2145.50 858.20 1703.90 246.03 984.13
J Spar cap, E (MPa) 31.04 93.12 62.08 41.74 5.91 23.64
K Trailing edge, E (MPa) 0.92 2.75 1.83 1.92 0.22 0.88
L Leading edge, E (MPa) 10.30 30.91 20.61 19.54 5.75 23.00
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predictions and physical measurements. Columns 5–7 describe the posterior uncertainty, that is, the statistics inferred by
performing 100; 000 trials of the MCMC search algorithm. Each trial consists in evaluating a new combination of the five
parameters by comparing GPM predictions of the three frequencies to measurements. The model visited is retained only if
its predictions pass a statistical test of goodness of fit with the experimental data and variability. After the MCMC iterations
are completed, the posterior probability law is inferred from the empirical distribution of the most often visited models.
These models are those that predict resonant frequencies in acceptable agreement with the measurements. This is assessed
using a goodness-of-fit metric that compares predictions and measurements. The MCMC sampling algorithm tends to
gravitate around models that yield a better goodness of fit. Hence, the higher-probability parameter values correspond to
models whose predictions match, on average, the measurements with higher accuracy.

Figure 4 illustrates graphically the five-dimensional posterior probability function corresponding to Table V. Each box
on the main diagonal represents a marginal distribution for one of the five parameters. Each off-diagonal box depicts a
probability contour for a pair of parameters.

The posterior bounds of ˙2 standard deviations listed in Table V (column 7) can be compared with the prior ranges
(column 4). This uncertainty is reduced by, at least, twofold for the moduli of elasticity of the spar cap (factor J) and
trailing edge (factor K). This is confirmed graphically by the narrow marginal histograms of these two parameters in
Figure 4. Knowledge of the two parameters of the leading edge (factors F and L) is not improved significantly likely
because, as shown in Table III, they contribute only 3% and 6%, respectively, to the overall variability in the model.
This is illustrated in Figure 4 by relatively ‘flat’ histograms of sampled values, which indicate non-informative, posterior
marginal functions.

Another important observation from the off-diagonal contours of bivariate probability is that there is no significant
correlation between the five model parameters. Observing a correlation would invalidate the development of a simplified
engineering model that is based on defining a small number of independent and uncorrelated sections of the blade. It would
also generate trade-offs between parameter values that would make it difficult to calibrate the model. Results presented
in Table V and Figure 4 answer Question C by demonstrating that it is possible, at least for two of the five parameters,
to reduce the parametric uncertainty in the model through the combination of sensitivity analysis and parameter inference.

Figure 5 compares the mean statistics of vibration measurements (with blue dashed lines) to predictions obtained before
and after inference uncertainty quantification. Samples from the prior ranges are shown with red dot symbols, whereas
those of the posterior ˙2� bounds are shown with green star symbols. Each subplot corresponds to one of the frequencies
of interest. The figure indicates that, as expected, combinations of parameters sampled from the joint, posterior distribution
yield models whose predictions tend to agree better with measurements. It confirms that the inference, while reducing the
uncertainty of three of the most influential parameters (see Table V), also contributes to better predictions of the flapwise
vibration modes of interest.

Figure 4. Marginal distribution and correlation functions corresponding to Table V.
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Figure 5. Prior and posterior predictions for the free–free configuration.

The fixed–free configuration of the CX-100 blade is investigated next. The simplified model is essentially the same,
with the exception of adding springs to the base to represent the boundary condition compliance. In this second stage,
the sensitivity analysis and inference are focused on reducing the uncertainty of material properties for the root section and
boundary springs.

4.4. Propagation of uncertainty and sensitivity analysis of the fixed–free configuration

The analysis proceeds with the numerical simulation of the fixed–free configuration of the blade where additional springs
are added to represent the boundary condition compliance. Separating the free–free and fixed–free configurations decouples
the homogenized properties investigated so far in Sections 4.2 and 4.3 from those of the fictitious boundary springs.

Figure 6 shows that the fixed–free configuration is realized experimentally by attaching the CX-100 blade to a steel
‘bookend’ fixture, weighing approximately 500 lbf (or 250 kg). Although this attachment is used to create a fixed boundary
condition, there is an inherent uncertainty due to the difficulty in producing an infinitely rigid connection. Fictitious springs
are implemented in the simplified FE model to account for this uncertainty and generate a boundary condition for which
the support is neither completely ‘free’ nor ‘fixed’. It is also noted, through an effect screening study, that rotational springs

Figure 6. Close-up of the simulated springs (left) and close-up of the bookend (right).
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at the base of the blade do not exercise any significant influence on the vibration characteristics. The fixture attachment is
limited to translational springs that are added in the X , Y and Z directions at 40 locations around the diameter of the base
of the root. Springs in the X and Y directions are assumed to be identical because they act in the same plane.

A difficulty introduced by the addition of boundary springs is that parametric studies are prone to mode swapping as
the spring stiffness coefficients are varied. As shown in Figure 7, a mismatch between the first modes of the simulated
free–free and fixed–free configurations is observed. It is deduced from this comparison that the first flapwise bending mode
of the fixed–free setting is not obtained until the boundary springs are sufficiently stiff. A preliminary parametric study is
therefore devoted to learning ranges for the spring stiffness coefficients that, while they avoid mode swapping as much as
possible, transition between the free–free and fixed–free conditions.

Simulations indicate that the vibration behavior converges asymptotically to the fixed–free blade when the boundary
spring stiffness coefficients are sufficiently large. Likewise, decreasing the coefficients converges to the free–free behavior.
This is illustrated in Figure 8. The first flapwise mode of the free–free configuration occurs for spring stiffness coefficients
smaller than 10C6 N m�1, approximately. The vibration behavior approaches the fixed–free configuration for coefficients
that exceed 10C8 N m�1. These two values are, therefore, good candidates to define the lower and upper bounds of the
subsequent parametric studies.

Figure 7. Comparison of the simulated free–free and fixed–free mode shape deflections.

Figure 8. Effect of varying the boundary spring coefficients on bending frequencies.
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The lower bound cannot be argued about because decreasing the boundary spring coefficient below 10C6 N m�1

suppresses the first free–free flapwise bending mode, as indicated in Figure 8. To verify that the upper bound yields a
stiff-enough attachment, a comparison is made with a simulation where the boundary springs are removed and, instead,
nodes at the base of the blade are fixed in all directions. Figure 9 compares the first three flapwise bending deflections of this
pinned connection to those obtained with boundary spring coefficients of 10C8 N m�1. The figure indicates an excellent
agreement between the two sets of shapes. In addition, frequency differences do not exceed 0.1%. From these observations,
it is concluded that setting the upper bound at 10C8 N m�1 suffices to define the fixed–free boundary condition.

Sensitivities of the simplified model for the fixed–free boundary condition are investigated next. It is noted that a
complete analysis is unnecessary because the simplified model has already been studied in the free–free configuration. Only
the homogenized material properties that are anticipated to exercise a statistically significant effect need to be re-evaluated.
They include parameters for the spar cap (factor J) and trailing edge (factors E and K), according to Table III. In the
free–free case, properties of the root were found to be insignificant contributors to the resonant frequency variability. In the
fixed–free case, however, the strain energy is re-distributed and shifted towards the base of the blade. Therefore, the material
parameters of the root section must be included in the study, together with the stiffness coefficients of boundary springs.

These considerations suggest a total of seven model parameters to investigate the variability of resonant frequencies
and mode shape deflections. The seven parameters include one stiffness coefficient for boundary springs added in the Z
direction and another stiffness coefficient for all springs parallel to either theX or Y axis. A two-level, full-factorial DOE is
utilized in an attempt to keep the parametric study to a manageable size with 27 D 128 runs. A two-level design is deemed
sufficient to screen the statistically significant effects.

Table VI summarizes the results of sensitivity analysis by listing the total-effect R2 statistics from the decomposition
of variability for the first three flapwise bending frequencies. The material properties of the root section (factors B and H)
are observed to have an insignificant effect on the vibration response of the model. It is possible that the more dominant
parameters simply outweigh the contribution of these properties for the root section. It is also observed that only the
translational springs in the Z direction have a significant influence on the response. This is likely because the flapwise
bending behavior of the blade exercises the springs oriented in the Z direction, which are parallel to the orientation of the
spar cap (see Figure 6). This bending does not strain springs oriented in the (X ; Y ) plane as much, which explains the low
influence of parameter k1 in Table VI.

The sensitivity results are used to reduce the number of parameters from seven to three, as shown in Table VI. A four-
level, full-factorial design, populated with 43 D 64 runs, is analyzed next to generate the training data required for inference
in Section 4.5. The bounds within which each parameter is allowed to vary are those listed in Table VI. The objective of
inference uncertainty quantification is to reduce this lack of knowledge as much as possible.

Figure 9. Shapes of a pinned boundary compared with those obtained with k D 108 N m�1.

Table VI. Total-effect R2 statistics for seven parameters of the fixed–free configuration.

Total-effect R2 statistics

Input factor FE model parameter Parameter lower bound Parameter upper bound Mode 1 Mode 3 Mode 5 Keep?

B Root, � 2072 kg m�3 3453 kg m�3 0.00% 0.00% 0.00% No
E Trailing edge, � 484.4 kg m�3 729.8 kg m�3 1.59% 5.14% 12.47% Yes
H Root, E 18.01 MPa 54.02 MPa 0.18% 0.58% 0.72% No
J Spar cap, E 29.92 MPa 53.56 MPa 6.90% 27.30% 29.17% Yes
K Trailing edge, E 1.48 MPa 2.35 MPa 0.07% 0.15% 5.17% No
M (X ; Y ) spring, k1 10C6 N m�1 10C8 N m�1 0.00% 0.00% 0.03% No
N Z spring, k2 10C6 N m�1 10C8 N m�1 39.44% 66.26% 50.14% Yes
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4.5. Inference uncertainty quantification of the fixed–free configuration

The results of inference uncertainty quantification are briefly summarized for simulations of the fixed–free configuration.
The statistics of the MCMC exploration of the three-parameter space (factors E, J and N of Table VI) are listed in
Table VII and posterior distributions are illustrated in Figure 10. These statistics are obtained with 20,000 iterations for the
MCMC exploration of the three-parameter space. This number of samples is sufficient to estimate the posterior probability
distribution with reasonable accuracy. This is because common practice is to use no fewer than a hundred iterations
per variable explored, which would require about 300 samples for our application. Using 20,000 iterations exceeds this
minimum expectation to provide sufficiently converged statistics.

Again, the inference successfully reduces the lack of knowledge of the modulus of elasticity of the spar cap (factor J).
This does not come as a surprise because this factor is the second most influential. The reduction of uncertainty is indicated
by a narrow histogram in Figure 10. It is also apparent that the statistics of the modulus of elasticity obtained with inference
of the free–free configuration (E D 41:7˙ 5:9 MPa in Table V) are consistent with those obtained with inference of the
fixed–free configuration (E D 40:7˙ 2:8 MPa in Table VII).

The inference is not able, on the other hand, to mitigate our ignorance of the boundary spring coefficient in the Z
direction (factor N). Table VI shows that this failure cannot be attributed to a lack of sensitivity of resonant frequencies
to the spring coefficient. A possible explanation is that the bookend attachment of the blade is not massive enough to
facilitate the storage of a significant quantity of strain energy near the base. Consequently, the vibration measurements may
be somewhat uninformative to constrain the value of the boundary spring stiffness. The inference is also unsuccessful for
the density of the trailing edge (factor E). This could be due to a potential interaction between the density and the boundary
spring during calibration. The contribution of the density to the overall variability of the model in both the free–free and
fixed–free cases is low relative to the other parameters, possibly resulting in poor inference results.

Figure 11 is the counterpart of Figure 5 and shows a comparison between the mean statistics of vibration measurements
(with blue dashed lines) and predictions of the simplified FE model obtained before and after inference. Samples from
the prior ranges are shown with red dot symbols, whereas those of the posterior ˙2� bounds are shown with green star
symbols. Each subplot corresponds to one of the frequencies of interest. It can be observed that, even though the study is
restricted to three parameters only, samples obtained from the posterior distribution tend to agree better with the physical
measurements.

Table VII. Comparison of prior and posterior uncertainty of three FE model parameters.

Prior uncertainty Posterior uncertainty

Input factor FE model parameter Lower Upper Range Mean Standard deviation ˙2� range

E Trailing edge, � (kg m�3) 484.37 729.81 245.44 593.11 66.99 267.96
J Spar cap, E (MPa) 29.92 53.56 23.64 40.66 2.76 11.04
N Z spring, k2 (�10C6 N m�1) 1.00 100.00 99.00 53.71 27.59 110.36

Figure 10. Marginal distribution and correlation functions corresponding to Table VII.
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Figure 11. Prior and posterior predictions for the fixed–free configuration.

This application illustrates that the combination of statistical effect screening (Sections 4.2 and 4.4) and inference
uncertainty quantification (Sections 4.3 and 4.5) is a powerful tool to reduce the parametric uncertainty of the simplified
model. The results obtained answer Question C but prove nothing regarding the predictive power of the model. In Section 5,
TAC is applied to the mode shape deflections to assess the overall validity of the model.

5. VALIDATION ASSESSMENT USING THE MODE SHAPE DEFLECTIONS

The predictive power of the simplified FE model is assessed through TAC of the mode shape deflections. The reason
for this choice is twofold. First, the mode shapes have not been used previously for sensitivity analysis or inference
uncertainty quantification. These deflections provide a separate dataset for validation of the model. It is emphasized that
using experimental data that were not considered during calibration is essential to validate the predictive capability of a
model. One could argue, rightfully so, that the mode shape vectors used for validation are not truly independent from the
resonant frequencies used for calibration. After all, they both originate from the same modal test. This is, however, the best
that could be achieved given the unavailability of other datasets at the time the study was initiated. The second reason is
that the simplified FE model of blade dynamics is developed for a future integration with the simulation of flow around the
turbine. For credible fluid–structure interaction, it is important to establish that the model provides accurate predictions of
the bending and torsion deflections.

Predictions of mode shapes are generated from multiple simulation runs obtained by sampling the posterior distributions
of material properties and spring coefficients for the two boundary conditions considered (both free–free and fixed–free).
These runs are used to establish that the simplified model is able to capture several aspects of the problem, such as predicting
different attachment conditions or reproducing the overall experimental variability.

The TAC is illustrated graphically in Figure 12 for the free–free boundary condition and in Figure 13 for the fixed–free
configuration. In both figures, the experimentally identified mode shapes are plotted using red solid lines. Variability from
the simulation predictions is reported with box plots (using blue symbols). The left sides of Figures 12 and 13 compare
values of the measured and predicted displacements. The right sides compare the overall deflection shapes of the first three
flapwise bending modes.

An excellent degree of correlation is obtained for the first mode shape of the free–free boundary condition in Figure 12;
however, the agreement breaks down with higher-order modes. This may be explained by the fact that higher-order mode
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shapes are more difficult to excite and identify experimentally. On the modeling side, a higher-order deflection may
be more sensitive than the first bending mode to the definition of a relatively small number of sections in the model
(only six sections). Both effects would tend to deteriorate the correlation observed. The overall degree of TAC of the first
three flapwise bending modes is, nevertheless, deemed satisfactory on the basis of not only these visual comparisons but
also the coefficients of correlation estimated next.

Figure 13 illustrates the mode shape correlation for the fixed–free configuration. A high degree of agreement is,
again, obtained between the measured and predicted deflections. The higher-order modes tend to be better correlated
to measurements than those obtained for the free–free boundary condition. This is a welcomed observation because the
simplified model will eventually be integrated to a coupled, structural–fluid simulation of the entire turbine, which implies
a fixed attachment at the root of each blade. Less prediction variability is obtained for the fixed–free configuration because
only three parameters are varied, compared with the five material properties exercised in the analysis of the free–free
boundary condition. The ability of the model to reproduce the experimental measurements, using parameters obtained
from an inference based on resonant frequencies, establishes that the boundary springs utilized have the potential to produce
reliable predictions of the blade behavior.

The modal assurance criterion (MAC) is calculated to quantify the correlation of mode shapes obtained for the
experimental and simulation results. The MAC is a coefficient of correlation:

MACD

�
ˆT

Test �ˆModel
�2

�
ˆT

Test �ˆTest
� �
ˆT

Model �ˆModel
� (1)

Figure 12. Measured and simulated mode shapes for the free–free configuration.
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Figure 13. Measured and simulated mode shapes for the fixed–free configuration.

Figure 14. Mode shape MAC of the free–free (left) and fixed–free (right) configurations.

where ˆTest and ˆModel are the measured and simulated mode shapes, respectively, expressed at the same degrees of
freedom. The purpose of this analysis is to verify the extent to which the deflections are parallel for the same modes and
orthogonal for different modes.

Figure 14 illustrates MAC values for the free–free and fixed–free configurations of the blade. The simulated deflections
are predicted by the FE model using average parameter values estimated from the posterior distributions of Figure 4

Wind Energ. 2013; 16:741–758 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/we

755



Simulating the dynamics of wind turbine blades: part II K. L. Van Buren et al.

(free–free) and Figure 10 (fixed–free). Large values on the main diagonal indicate strong correlations between similar
modes. On average, the diagonal MAC values are 84% for the free–free boundary and 94% for the fixed–free boundary.
Likewise, small values of the off-diagonal suggest that dissimilar modes are orthogonal, as they should be. On average,
the off-diagonal MAC values are 21% for the free–free boundary and 19% for the fixed–free boundary. These observations
validate the ability of the simplified model to predict mode shape deflections, hence answering Question D.

6. CONCLUSION

This second half of a two-part publication discusses the development of a simplified FE model of a wind turbine blade. A
particular effort is made to quantify all sources of uncertainty in the simulation and assess their effects on predictions of the
low-frequency vibration dynamics of the blade. Because it is exposed to the danger of over-fitting, conventional calibration
is not performed to reconcile model predictions and physical measurements. Instead, V&V activities are employed to assess
the overall predictive capability of the model. The discussion illustrates what can be learned from specific V&V activities
and how these can be integrated to the model development process.

The objective of this work is to develop a fast-running engineering model of blade vibrations for future integration with
a fluid dynamics simulation for an entire wind turbine and, eventually, an entire wind plant composed of multiple turbines.
It implies that the structural model must be fast-running while providing an accurate-enough representation of the low-
order bending and torsion dynamics that will be coupled to the flow around the blade. Four questions are asked regarding
specific aspects of the predictive capability being developed.

� Question A: What is an appropriate level of mesh resolution for the calculations?
Answer: Mesh refinement, combined to an upper bound of solution uncertainty, suggests that a mesh size of 8.0 cm

provides accurate-enough predictions of resonant frequencies. The average solution uncertainty, due to truncation
error, is estimated to be 1.78%, which is similar to the overall experimental variability (1.62%). This particular mesh,
case-specific for our application, provides an extraction of resonant mode shapes and frequencies in less than 60 s.
(See Mollineaux et al.12)

� Question B: What are the parameters that most influence the variability of predictions?
Answer: DOEs are used in conjunction with variance decomposition to identify parameters of the model that

control the variability of frequency predictions. The top three most influential parameters are the moduli of elasticity
of the spar cap and leading edge section and density of the trailing edge section. Boundary springs are also influential.
Knowing these parameters allows for a more efficient reduction of the prediction variability.

� Question C: Can measurements be used to reduce the parametric uncertainty in the model?
Answer: Measurements of the vibration response in two configurations, free–free and fixed–free, can be used to

reduce the lack of knowledge of model parameters. This is achieved through inference uncertainty quantification,
as opposed to deterministic calibration of the parameters. The ignorance of the most influential parameters is
reduced by twofold, if not more. The average plus-or-minus one standard deviation statistics are the following:
E D 40:7˙2:8MPa for the spar cap; E D 19:5˙5:8MPa for the leading edge section; �D 607:1˙61:4 kg m�3 for
the trailing edge section; and k2 D 53:7˙27:6 .�10C6/ N �m�1 for the boundary springs. Proceeding in two separate
steps, first with the free–free blade and then with the fixed–free blade, enables a decoupling between the boundary
springs and most other parameters.

� Question D: Does the model provide accurate-enough predictions of mode shapes?
Answer: The ability of the simplified model to predict mode shape deflections is validated through test-analysis

correlation (TAC). The degree of agreement observed is excellent, considering the complexity of the structure, with
84% correlation for the free–free modes and 94% correlation for the fixed–free modes. Datasets used for validation
(mode shapes) are kept separate from, and independent of, the data to which the sensitivity analysis and statistical
inference are applied (resonant frequencies).

The panoply of V&V activities deployed for this application include verifying the implementation of the software;
performing mesh refinements to estimate the solution uncertainty; developing a Phenomena Identification and Ranking
Table to define the important parameters; running designs of computer experiments to, first, identify the most signifi-
cant effects through sensitivity analysis and, second, develop fast-running Gaussian Process Model emulators; propagating
uncertainty from model parameters to frequency and mode shape predictions; and performing inference uncertainty quan-
tification to reduce the lack of knowledge of material properties and boundary springs. The overall validation assessment
is grounded in the TAC of mode shape deflections, which are data that have not been used for the sensitivity analysis and
uncertainty quantification.

The study concludes that our scientific hypothesis is confirmed: a simplified but credible model of the low-frequency,
structural response can be developed for future integration with the flow dynamics simulation. This positive finding is an
encouragement to pursue this work even further with the on-going development and V&V of a non-linear beam element
capable of describing the large displacements and large deformations witnessed by blades during the normal operation
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of a wind turbine. Future work will involve integrating the simplified FE model, one-dimensional beam element and
computation fluid dynamics software for the numerical simulation of performance of entire wind plants.

The development of future models will also take into account experimental data that further exercise the compliance
of the fixed–free boundary condition. New vibration tests have been executed with another suspension system and the
addition of masses that further stress the compliance of the fixed–free boundary condition. Future TAC will promote a
better understanding of the role that the boundary spring stiffness plays in model development.
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