
Computing Robustness of FlexRay Schedules
to Uncertainties in Design Parameters

Arkadeb Ghosal, Haibo Zeng
General Motors Research

{arkadeb.ghosal,haibo.zeng}@gm.com

Marco Di Natale
Scuola Superiore SantAnna

marco@sssup.it

Yakov Ben-Haim
Technion - Israel Institute of Technology

yakov@techunix.technion.ac.il

Abstract—In the current environment of rapidly changing in-
vehicle requirements and ever-increasing functional content for
automotive EE systems, there are several sources of uncertainties
in the definition of EE architecture design. This is also true for
communication schedule synthesis where key decisions are taken
early because of interactions with the suppliers. The possibility of
change necessitates a design process that can analyze schedules
for robustness to uncertainties, e.g., changes in estimated task
durations or communication load. A robust design would be able
to accommodate these changes incrementally without changes
in the system scheduling, thus reducing validation times and
increasing reusability. This paper introduces a novel approach
based on the info-gap decision theory that provides a systematic
scheme for analyzing robustness of schedules by computing the
greatest horizon of uncertainty that still satisfies the performance
requirements. The paper formulates info-gap models for potential
uncertainties in schedule synthesis for a distributed automotive
system communicating over a FlexRay network, and shows their
application to a case study.

I. INTRODUCTION

Rapid change in electronic control features in automotive
systems introduces uncertainties in design decisions. This is
especially true for the early-binding design process when
critical decisions are made under the following uncertainties:
(1) system requirements are captured prior to significant design
and development, (2) the architecture needs to be developed
sufficiently in advance to be available at the right production
time frame, and (3) an architecture is projected to be reused
across multiple implementations, and different features to cut
down cost.

Uncertainties in the system or feature set may cause signifi-
cant redesign down the life cycle of the system. To avoid such
a situation, a system designer needs to estimate the robustness
of a design to uncertainties; the most prevalent techniques for
such analyses are max-min or sensitivity analysis.

Sensitivity studies the variation of the output due to changes
in input; the goal is to identify the inputs which cause
substantial change in output in contrast to those which cause
minor change. Min-max or worst-case analysis chooses a
design which minimizes the maximum loss at a specified level
of uncertainty. In this paper, we discuss the use of the info-gap
methodology [3] to evaluate design decisions based on their
ability to tolerate uncertainty. Info-gap differs from the above
techniques in (1) allowing unbounded horizon on uncertainty,
(2) enabling exploration of structural or functional uncertainty,
and (3) analyzing the design decisions across different regions

of uncertainty and thus enabling the final decision to reflect
the best possible robustness according to requirements.

A critical problem for any distributed system is the syn-
thesis of communication schedules. The choice is made by
considering time constraints/metrics (e.g., latency), or exten-
sibility/uncertainty metrics (e.g., utilization).

When used for schedule selection, the info-gap technique
does not necessarily choose one schedule; it provides different
schedules for different ranges of uncertainty. This necessitates
trend analysis to understand the zone of uncertainty, and the
performance constraints of the system. The system model
under study is an electronic control system implemented
on a distributed architecture communicating over a FlexRay
network. In this paper, we use the info-gap technique for eval-
uating robustness to uncertainty in the payloads of messages
transmitted over the network. The technique can be extended
for uncertainties in dependency (read-write relation between
tasks and messages), number of tasks and messages, period
(rate of task execution, or message transmission), and topology
(mapping of tasks to hosts and messages to channels).

We next introduce references to work in the area of schedul-
ing subject to uncertainty or sensitivity analysis. Section II
presents an overview of the info-gap technique, and compares
it with min-max and sensitivity analysis. Section III discusses
a system model that uses a FlexRay network and the schedule
synthesis problem. Section IV describes in detail the formu-
lation and construction of info-gap models for uncertainty in
the length of messages. Section V discusses a representative
schedule synthesis problem. Section VI summarizes the key
aspects and discusses the next steps.

A. Related work

The literature on FlexRay scheduling, scheduling extensi-
bility and sensitivity analysis in real-time systems is rich.
Sensitivity analysis was studied for priority-based scheduled
distributed systems [11], with respect to end-to-end deadlines.
In [10] a design optimization heuristics-based algorithm for
mixed time-triggered and event-triggered systems was pro-
posed. In [5], task allocation and priority assignment were
defined with the purpose of optimizing the extensibility with
respect to changes in task computation times; the proposed
solution was based on simulated annealing. In [7], [9], [8], a
generalized definition of extensibility on multiple dimensions



(including changes in the execution times of tasks, but also
period speed-ups and possibly other metrics) was presented.

II. INFO-GAP THEORY: A PRÉCIS

Info-gap theory is a methodology for planning, design, and
decision under severe uncertainty which has been applied to
engineering design, project management, economics, biologi-
cal conservation, medicine, and homeland security. We present
some of the basic features of info-gap theory; for more detailed
discussions refer to [2], [3], and info-gap.com.

An info-gap robustness analysis is based on three com-
ponents: a system model, performance requirements, and
uncertainty models. In time-triggered systems, the system
model entails the number of task and messages with the
flow topology, the durations of computation/communication,
and the allocation of tasks/messages to ECUs/channels (ECU
stands for Electronic Control Unit, a network node). The
performance requirements include the latency constraints be-
tween data reads and data writes, the utilization bound of
hosts and channels, and the buffer size restrictions for data
transmission/reception. The uncertainties include execution
time estimates for tasks, payloads for messages, dependen-
cies among tasks and messages, period assignments, and the
allocation of tasks and messages.

The three components of an info-gap analysis are combined
in the evaluation of robustness and opportuneness. The robust-
ness against uncertainty is the greatest horizon of uncertainty
at which critical or minimal performance requirements are
guaranteed; in other words, robustness is the degree of im-
munity of the system against unforeseen contingencies. The
opportuneness from uncertainty is the lowest horizon of un-
certainty at which windfall performance—much better than the
critical performance—is possible (though not guaranteed). The
opportuneness function expresses the propensity for better-
than-anticipated outcomes. A simple example of an info-gap
model is presented here. In Section IV we discuss in details
the info-gap model corresponding to uncertainty in message
payloads.

Consider the uncertainty in object (task or message) dura-
tions. The best estimate of the duration of the i-th object is w̃i,
and the unit for error estimates is εi. There is no probability
distribution of the actual duration, wi, since the factors that
cause deviation are varied and incompletely understood. Let w̃
and ε denote the vectors of these estimates. A simple info-gap
model for uncertainty in the object durations is the fractional-
error model:

U(α) =
{
w : wi ≥ 0,

∣∣∣∣wi − w̃iεi

∣∣∣∣ ≤ α, ∀ i} , α ≥ 0 (1)

U(α) represents an unbounded family of nested sets of object
duration vectors w.

Robustness. Let L(w, δ) denote the model (for example, the
end-to-end latency) of a system with uncertain object durations
w and design parameters δ. Let U(α) denote an info-gap model
for uncertainty in w. The performance requirement is that

L(w, δ) must not exceed a critical value Lc i.e.,

L(w, δ) ≤ Lc (2)

The robustness of the system represented by L(w, δ), with
the requirement in (2) and uncertainties U(α), is the greatest
horizon of uncertainty at which the requirement is guaranteed
to be satisfied:

α̂(δ, Lc) = max
{
α :

(
max
w∈U(α)

L(w, δ)
)
≤ Lc

}
(3)

The true horizon of uncertainty is not known. However,
the performance is guaranteed provided that the horizon of
uncertainty does not exceed the robustness.

The robustness function induces a robustness preference
ranking on the possible designs - δ, δ′:

δ �r δ
′ if α̂(δ, Lc) > α̂(δ′, Lc) (4)

Opportuneness. Uncertainty can be propitious, and the
opportuneness function evaluates the propensity for better-
than-anticipated outcomes. Let Lw be a value of end-to-end
latency which is smaller (better) than the requirement Lc.
Latency as short as Lw is not required, but would be a valuable
windfall should it occur. The opportuneness of the system
L(w, δ), with uncertainty model U(α), is the lowest horizon
of uncertainty at which latency as short as Lw is possible,
though not guaranteed:

β̂(δ, Lw) = min
{
α :

(
min

w∈U(α)
L(w, δ)

)
≤ Lw

}
(5)

A latency as short as Lw is possible if the horizon of
uncertainty is no less than the opportuneness.

Relation to Sensitivity Analysis. The info-gap robustness
function, α̂(δ, Lc) can be thought of as sensitivity to un-
certainty. There are, however, two differences between info-
gap robustness and conventional what is usually referred to
as sensitivity analysis. First, the info-gap robustness is not
differential i.e., info-gap analysis does not consider only small
variations. Rather, since the horizon of uncertainty is unknown,
we ask what is the greatest error in our models, data and
estimates which can be tolerated. Second, an info-gap model is
well suited to represent uncertainty in functional relationships,
as well as uncertainty in parameters or vectors.

Relation to the Min-Max Strategy. The min-max strategy
selects the design that minimizes the maximal loss. The info-
gap robustness function has a formal relation to the min-max
strategy. However, there are two important differences. First,
implementation of a min-max strategy requires knowledge of
a worst case. In contrast, an info-gap model of uncertainty is
explicitly designed to represent situations in which we do not
know how wrong the best estimate can be. Second, even if
we reliably know the worst that can occur, we may not want
to design for that contingency. The clearest case is when the
outcome anticipated from the min-max design is unacceptable
because it violates the performance requirements.



III. FLEXRAY STANDARD AND MODELS

FlexRay [1] is an automotive standard for high-speed and
reliable communication that is being widely deployed for next-
generation cars. FlexRay is a time-triggered protocol, which
provides a global notion of time shared across all nodes, and is
used to schedule communication and computational elements.
In FlexRay, the global time base is comprised of an application
cycle, defined as the least common multiple of all periods of
tasks and messages, broken into an integer number of equal
duration communication cycles. Each cycle contains up to four
segments: static, dynamic, symbol, and network idle time (nit),
as shown in Figure 1. Clock synchronization is embedded into
the standard, and realized using part of the nit segment. Of the
communication segments, the static part allows transmission of
time-critical messages according to a periodic cycle in which
the system allocates time slots to nodes for the transmission
of their outgoing messages. The number of static slots is fixed
at design time, and all slots have the same length. A static slot
is assigned to a node for all cycles or is not assigned at all.
Application data transmitted by a node may be less than the
available data content of a slot.

The transmission time on the dynamic segment is parti-
tioned in mini-slots with increasing identifiers. Each message
has an associated frame ID. Messages (of different length) are
transmitted when their ID matches the minislot identifier. In
case of transmission, the duration of the minislot is extended
to accomodate the message transmission time. The assignment
of frame IDs to dynamic messages is done (at design time)
based on priority, deadlines, or other considerations.

The scheduling problem is essentially the assignment of
messages to the slots in accordance with the protocol rules
and in such a way that the precedence (from sender task to
message, and from message to receiver task) and timing con-
straints are met. The application software tasks are executed
based on a dispatch table that defines the individual task start
times.

Symbol
Window

Network
Idle

Time

Static Segment Dynamic Segment

Microtick
Level

Macrotick
Level

Arbitration
Grid Level

Communication
Cycle Level

Application
Cycle Level

Macrotick

Microtick

Static
Slot

Mini
Slot

Application Cycle

N

Cycle

N - 1

Cycle

N + 1

Fig. 1. FlexRay Timing Hierarchy

The FlexRay model used here assumes that the size of
the application cycle, communication cycle, dynamic segment,
symbol window and network idle time are expressed as a
number of slots. A slot is assumed to be consistent and
constant globally.

The system communications consist of a set of frames
F = {f1, . . . , fn} transmitted over an architecture A in
which a set of hosts (ECUs) H are connected by a FlexRay
bus. A host is a processor that performs computation and
transmits/receives frames over the communication channel. A
frame fi is a collection of signals and is associated with a tuple
(hi, oi, di, w̃i, bci, cri) where hi ∈ H denotes the processor
transmitting the frame, oi ∈ N+ denotes the earliest, and
di ∈ N+ the latest (among the static slots of a communication
cycle) slots that can be assigned to fi. The pair (oi, di) is
derived from the execution of the tasks transmitting and re-
ceiving the frame. In other words, the interval [oi, di] provides
a window of transmission for the frame. The nominal size
w̃ ∈ N+ denotes the payload size of the frame (the sum of the
size of its signals). The base cycle bc ∈ N+ denotes the offset,
and the cycle repetition cr ∈ N+ denotes the periodicity of a
frame with respect to an application cycle. The set of frames
transmitted by a host h is denoted by Fh.

A. Scheduling the Static Segment

Schedule synthesis solves the problem of mapping frames
to static slots such that frames are transmitted within their
respective windows. A static slot is fully identified by a pair:
a slot number s, and communication cycle number cc. A
schedule σ for static segment is a set of three mappings. The
frame mapping β provides a mapping for each frame to a set
of static slots; β(f) is the set of slots assigned to frame f . The
host mapping α denotes the slots assigned to each host; α(h)
is the set of slots assigned to host h. The static slot mapping γ
denotes the frame assigned to a particular static segment slot
in a communication cycle; given a slot s, γ(cc, s) denotes the
frame assigned to the slot s in the communication cycle cc.

A schedule σ is protocol-safe if all of the following hold:
• A slot on FlexRay is not allocated to two different hosts,

i.e. ∀h1, h2 ∈ H: α(h1) ∩ α(h2) = ∅.
• Two frames f1, f2 cannot be mapped to identical slots

i.e., β(f1) ∩ β(f2) = ∅ (each slot in a communication
cycle is either empty or mapped to a unique frame).

• The size of a frame must be less than the slot size.
• The allocation of slots to frames must be consistent with

the allocation of slots to hosts. If a slot is allocated to a
frame, then it must also be allocated to the source host
for the frame, i.e., fi = γ(cc, s)⇒ (cc, s) ∈ α(hi).

• A slot in a communication cycle may be empty and still
occupied by a host.

A schedule σ is execution-safe if for each frame, it assigns
enough slots to accommodate the payload, and each frame is
assigned transmission slots within the feasible time window. A
schedule is valid if the schedule is protocol-safe and execution-
safe. FlexRay scheduling, however, is not the objective of this
paper. Please refer to [12] for the definition of the scheduling
problem, the protocol restrictions, and the solutions.

B. Scheduling Policies and Performance Requirements

Schedules can be differentiated based on the strategy used
to define them, or the performance objective of the system:



• Strategy of Schedule Synthesis. A schedule can be gen-
erated based on deadline, priority, or other user-defined
constraints. Deadlines or priorities may determine the
scheduling order of two frames if both are ready to be
transmitted at identical time instants. Other than the above
constraints, the user may provide limitations e.g. a frame
can only be scheduled in specific slots.

• Performance of Synthesized Schedule. Several metrics can
be used to evaluate the quality of a schedule. Possible op-
tions are slack, latency, utilization and buffer size. Slack
is the minimum idle time available within a given time
window; the intent is to provide space for extensibility.
Latency is the delay between two events like reading of
input, and writing of output. Utilization is a measure
of the resources used, and is normally expressed as a
fraction of processor time or network bandwidth. Buffer
size denotes the storage required by hosts at the interface
of channels. The storage is used for frames that are ready
to be transmitted, or the frames that are received from the
channels. Of those, latency and buffer sizes are typically
also associated with (possibly) hard constraints.

In our analysis, we tried two different performance metric
functions: the latency on a critical path, and the utilization
of the communication cycles. The buffer requirements are
assumed to be handled by the assignment of transmission
windows to frames, and the mapping of frames to hosts.
The application of info-gap is of course not limited to these
performance functions. The end-to-end latency Li,j associated
with a path Pi,j is defined as the largest possible time interval
that is required for the change of the input at one end of the
path to be propagated to the last task at the other end of the
path. The static segment utilization Γcc for a communication
cycle cc is defined as the ratio of used slots (of the static
segment) to the total number of slots (in the static segment) in
the communication cycle. The static utilization of the system Γ
is the maximum utilization among all communication cycles,
i.e., Γ = max

cc
Γcc.

IV. INFOGAP MODEL

The model assumes that the size of the frames may be
uncertain, i.e., there is a possible error in the estimation of the
frame payload. Given a frame f , the actual size wf is w̃f+αεf
where w̃f is the nominal size, εf is the unit considered for the
estimation error, and α is the unknown horizon of uncertainty.
Let w̃ denote the vector of estimated size of frames, ε denote
the vector of error units and w denote the vector of unknown
actual durations. The fractional-error info-gap model in (1) is
used for the info-gap quantification of uncertainty in frame
sizes.

Given a schedule σ, the robustness is the greatest horizon of
uncertainty up to which the static segment utilization of the
system (resp. latency of the critical path) under a (possibly
modified) schedule is less than the critical static segment
utilization (resp. critical latency of the path). A schedule σ
under uncertainty α is denoted as σ(α). σ(α = 0) is the
schedule obtained assuming the nominal size of frames. At

any uncertainty value α > 0, the additional payload to be
transmitted is dα× εfe, and the frame size is w̃f + dα× εfe.

The uncertainty is modeled as U(α, w̃) where each frame
size ranges in between w̃f−αεf and w̃f+αεf . The robustness
is computed as follows. The utilization Γcc(w) of a commu-
nication cycle cc is computed based on the actual frame sizes
w at a given uncertainty. The robustness of the schedule is the
greatest horizon of uncertainty up to which system utilization
is within a critical value, ΓC . Formally, the robustness is

α̂ = max{α : max
cc

max
w∈U(α,w̃)

Γcc(w) ≤ ΓC} (6)

Intuitively, the net robustness α̂ is the robustness of the least
robust communication cycle. When latency of the critical path
is considered, the robustness of the schedule is the greatest
horizon of uncertainty up to which the latency LP of the
critical path P is within a critical value LC . Formally, the
robustness is

α̂ = max{α : max
w∈U(α,w̃)

LP (w) ≤ LC} (7)

Consider a simple system (Figure 2) in which a computation
pipeline with three tasks and two frames (T1→ f1→ T2→
f2 → T3) is scheduled on two ECUs and one Network.
Time (both for computation and communication) is allocated
in slots. Schedule A (top part of the figure) allows lower end-
to-end latency than schedule B (bottom part of the figure)
when there is no uncertainty in the frame sizes. However,
there may be an error in estimating the size of the frames,
which may include future uncertainties, and/or overlooked
communication. In the info-gap model for this example, the
uncertainty of one slot is 1 step of uncertainty (or 100%
change). For the robustness computation (when the frame size
is increased), if the current slot has no space, then the next
available slot is used. At a given uncertainty value, the system
is checked to ensure that there is a feasible schedule for
increase in all frame payloads. For the above system, both
schedules can accommodate the extension. However, for the
schedule A, the latency increases (from 5 to 21 time units)
while the latency remains the same for the second schedule (7
time units). If the critical latency of the path is 10, schedule B
is a better choice than schedule A, as schedule B can tolerate
changes in the frame payload (and still be within the desired
latency) while schedule A cannot. However if the uncertainty
is 200% or the payload changes by 2 slots, then the latency
for the extended schedule jumps to 21 (for schedule A) and
23 (for schedule B). Depending on the horizon of uncertainty
and the initial latency, schedule B may be more robust than
schedule A. Note that the robustness computation depends on
the extension policy, and the uncertainty modeling (e.g., what
is the implication of one step of uncertainty). If the extension
policy for the schedules was different, then the robustness may
have been different. Similarly, if the model of uncertainty had
been different (e.g., 1 step of uncertainty denoting a 2-unit
change instead of 1 unit), then the robustness computation
would have been different.



=2

1

f 1

T2

f 2

T3

T2

T3

l=7

T1

T2

T3 T1

T2

T3

T1

f 1

T2

f 2

T3 T1

f 1

T2

f 2

T3 T1

f 1

T2

f 2

T3

f 1 f 2 f 1 f 2 f 2f 1

f 1 f 2 f 1 f 2f 1 f 2 f 1 f 2f 1 f 1 f 2 f 2

a) α =0

a) α =0

b) α =1

l=5
Schedule A

l=21

ECU 1

Network

ECU 2

Network

Schedule B

ECU 1

ECU 2

l=7

T1

l=23

b) α =1

c) α

T

Fig. 2. Comparing Robustness

V. CASE STUDY

Table I describes the tasks of an X-by-Wire application
from an automotive OEM. The application has 10 ECUs
interconnected by a FlexRay bus. The 47 application tasks
exchange 132 signals with periods of 1ms, 4ms and 8ms.
The FlexRay bus is configured with a communication cycle
of 1000µs with 22 static slots. Each slot is 35µs and can
accommodate 200 bits of signal payload. The application cycle
of the case study is 8000µs.

τi ei Ti(µs) Ci(µs) τi ei Ti(µs) Ci(µs)
τ8 e9 8000 810 τ20 e10 8000 230
τ9 e9 8000 550 τ21 e5 1000 25
τ11 e9 8000 100 τ22/τ26/τ30/τ34 e5/e6/e7/e8 1000 60
τ12 e9 8000 770 τ25/τ29/τ33 e6/e7/e8 1000 30
τ13 e9 8000 200 τ24/τ28/τ32/τ36 e5/e6/e7/e8 1000 20
τ14 e9 8000 110 τ23/τ27/τ31/τ35 e5/e6/e7/e8 1000 40
τ15 e9 8000 550 τ37/τ42/τ47/τ52 e1/e2/e3/e4 8000 1000
τ16 e10 8000 780 τ38/τ43/τ48/τ53 e1/e2/e3/e4 8000 500
τ10 e10 8000 510 τ41/τ46/τ51/τ56 e1/e2/e3/e4 8000 350
τ17 e10 8000 190 τ39/τ44/τ49/τ54 e1/e2/e3/e4 8000 1500
τ18 e10 8000 260 τ40/τ45/τ50/τ55 e1/e2/e3/e4 4000 1300
τ19 e10 8000 100

τ : task, e : transmitting ecu, T : period, C : wcet

TABLE I
TASKS OF THE X-BY-WIRE EXAMPLE

A manually generated schedule for the design is shown
in Table II. It uses 18 slots with 22 frames. The table
shows the size of each frame and its position with respect
to communication cycles (numbered 0 to 7 in the columns),
and static segment slots (numbered 1 to 22 in the rows). The
frames sent in slots 5, 6, 7, 8, 13, 14, 16, and 17 are transmitted
with periodicity 1ms (base cycle = 0); all other frames are
sent with periodicity 8ms (the base cycle is the same as
the communication cycle in which they are transmitted). A
different schedule is generated automatically based on the
method in [12], which uses an MILP (Mixed Integer Linear
Programming) optimization framework to find the schedule
with minimum number of used slots. Table III shows the result
of the automatically generated schedule which uses 13 slots
and has 31 frames. The frames sent in slots 2, 5, 6, 7, 8, 9,
and 19 are transmitted with periodicity 1ms (base cycle = 0);
all other frames are sent with periodicity 8ms (the base cycle
is the same as the communication cycle of their transmission).

Robustness Analysis. The schedules are studied for robust-
ness against uncertainties in the payload of the frames. At
each level of uncertainty, a possible schedule is generated
by finding additional slots for each extended frame. When

slot sender 0 1 2 3 4 5 6 7
1 e1 32 160
2 e2 32 160
3 e3 32 160
4 e4 32 160
5 e5 160 160 160 160 160 160 160 160
6 e6 160 160 160 160 160 160 160 160
7 e7 192 160 160 160 160 160 160 160
8 e8 192 192 192 192 192 192 192 192
9 e9 192

10 e9 192
13 e7 1 1 1 1 1 1 1 1
14 e8 64 64 64 64 64 64 64 64
15 e9 120
16 e5 112 112 112 112 112 112 112 112
17 e6 112 112 112 112 112 112 112 112
19 e9 128
20 e10 128
21 e9 1

(Slots 11, 12, 18, 22 are unassigned.)

TABLE II
SCHEDULE GENERATED MANUALLY

slot sender 0 1 2 3 4 5 6 7
1 e2 32 160
2 e5 160 160 160 160 160 160 160 160
3 e10 96 32
4 e9 104 65 80 192 16 176
5 e7 193 193 193 193 193 193 193 193
6 e8 112 112 112 112 112 112 112 112
7 e6 200 200 200 200 200 200 200 200
8 e6 72 72 72 72 72 72 72 72
9 e5 112 112 112 112 112 112 112 112

10 e1 16 64 32 80
11 e4 96 16 16 16 32 16
12 e3 16 48 80 48
19 e8 144 144 144 144 144 144 144 144

(Slots 13, 14, 15, 16, 17, 18, 20, 21, 22 are unassigned.)

TABLE III
SCHEDULE GENERATED AUTOMATICALLY

more payload is added, a frame may use space in the slots
already allocated to it, or possibly be extended to open slots.
Each frame is assumed to have an uncertainty unit ε of 1
byte of payload; thus for 0 < α ≤ 1, the extra payload is
dα × 1e = 1 byte. At each uncertainty, frames are checked
in order whether there is enough space for extension. In our
analysis, the space for the frames is allocated in order of
increasing transmission window deadlines and, as a secondary
metric, in order of decreasing payload. The results for the
latency-oriented analysis are (Figure 3):

0

2

4

6

8

10

12

14

9000 9500 10000 10500 11000 11500

Latency

R
o

b
u

s
tn

e
s

s

Automatic Schedule

Manual Schedule

Fig. 3. Analysis With Latency Performance.



• At zero uncertainty, the latency of the critical path for
the manual design (9045µs) is less than that of the
periodic schedule (9105µs). The manual schedule would
be preferrable if there is no uncertainty in the design. The
manual design also tolerates uncertainty of 1 (i.e., each
frame can have an additional load of 8 bits) at latency
9045µs.

• If the allowed latency on the critical path is less than
10045µs, then the automatic schedule is the better choice
as it has a robustness of 5. If the allowed latency on
the critical path is 100045µs, then both schedules are
comparable (both tolerate an uncertainty level of 5).

• If the allowed latency on the critical path is greater
than 10045µs, then the automatic schedule is better. For
any latency greater than 10045µs, the manual design
tolerates an uncertainty level of 5 (i.e., each frame can
have an additional load of 40 bits). For latencies between
10045µs and 11105µs, the automatic schedule tolerates
an uncertainty of 7 units; for latencies greater than
11105µs, the schedule tolerates an uncertainty of 13 units
(i.e., each frame can have an additional load of 104 bits).

The results for the utilization-based metric are (Figure 4):
• At zero uncertainty (α = 0), the manual design (Γ = .55)

is comparable to the automatic schedule (Γ = .55).
• If the uncertainty is less than 1 (i.e., each frame can

increase in size by at most 8 bits), then the manual design
is a better choice as the manual design has a robustness
of 1 at Γ = .55,

• For utilization values Γ <= .64, both designs are compa-
rable - each has a robustness of 5 units (i.e., each frame
can accommodate an additional load of 40 bits).

• If Γ > .68 is allowed, then the automatic design is a
better choice. While the manual design can tolerate a
maximum robustness of 5, the automatically generated
schedule can accomodate 7 additional units at Γ = .68,
11 units at Γ = .73, and 13 additional units of extension
at Γ = .82.

• If the utilization is bound to the maximum limit of 100%,
then the automatic schedule is a better choice over the
manual design as the former has a higher maximum
robustness.

0

2

4

6

8

10

12

14

0 0,2 0,4 0,6 0,8 1

Utilization

R
o

b
u

s
tn

e
s

s

Automatic Schedule

Manual Schedule

Fig. 4. Analysis With Utilization Performance.

For almost all values in our selected ranges for the two
performance metrics, the schedule produced with the opti-
mization method in [12] allows for higher robustness. This
confirms in quantitative terms the intuitive perception that a
higher number of free slots in a FlexRay schedule allows to
better accomodate future loads and therefore provides for more
extensibility against uncertainty.

VI. CONCLUSION

This paper presented a methodology for the analysis of
FlexRay schedules subject to uncertainty in frame payloads.
The uncertainties we considered arise from unknown future
loads and/or overlooked communication. Probability distribu-
tions for the uncertain quantities are unknown and we used
non-probabilistic info-gap models of uncertainty. We studied
and developed info-gap models for a wide range of uncer-
tainties: an example on the data content of messages frames
is presented and discussed in this paper with realistic case
studies. The robust-satisficing strategy presented here proposes
maximizing the robustness to uncertainty and satisfying latency
and utilization requirements. The practical implication of the
robust-satisficing strategy is obvious when the robustness
curves for two different schedules cross, as illustrated in our
examples. Our plans for future work include exploration of
different types of extensibility, such as a variable additional
load for each frame (possibly proportional to the frame length),
but also additional computation load, including additional
execution time for the system tasks. Finally, we plan to include
the possible addition of new tasks and messages.

REFERENCES

[1] FlexRay communications system specifications 2.1. 2005.
[2] Y. Ben-Haim. Engineering Design Reliability Handbook, vol 3, chapter

Info-gap Decision Theory For Engineering Design. Or: Why ‘Good’ is
Preferable to ‘Best’. CRC Press, 2005.

[3] Y. Ben-Haim. Info-gap Decision Theory: Decisions Under Severe
Uncertainty (2nd edition).

[4] Yakov Ben-Haim, Clifford C. Dacso, Jonathon Carrasco and Nithin Rajan,
Heterogeneous Uncertainties in Cholesterol Management International
Journal of Approximate Reasoning, 50: 1046–1065.

[5] I. Bate and P. Emberson. Incorporating scenarios and heuristics to
improve flexibility in real-time embedded systems. In 12th IEEE RTAS
Conference, pages 221–230, April 2006.

[6] Enrico Bini, Marco Di Natale, and Giorgio Buttazzo. Sensitivity analysis
for fixed-priority real-time systems. In Euromicro Conference on Real-
Time Systems, Dresden, Germany, June 2006.

[7] A. Hamann, R. Racu, and R Ernst. A formal approach to robustness
maximization of complex heterogeneous embedded systems. In Proc. of
the CODES/ISSS Conference, October 2006.

[8] A. Hamann, R. Racu, and R Ernst. Methods for multi-dimensional
robustness optimization in complex embedded systems. In Proc. of the
ACM EMSOFT Conference, September 2007.

[9] A. Hamann, R. Racu, and R Ernst. Multi-dimensional robustness
optimization in heterogeneous distributed embedded systems. In Proc.
of the 13th IEEE RTAS Conference, April 2007.

[10] T. Pop, P. Eles, and Z. Peng. Design optimization of mixed time/event-
triggered distributed embedded systems. In Proc. of the CODES+ISSS
Conference, New York, NY, USA, 2003. ACM Press.

[11] R. Racu, M. Jersak, and R. Ernst. Applying sensitivity analysis in real-
time distributed systems. In Proc. of the RTAS Conference, San Francisco
(CA), U.S.A., March 2005.

[12] H. Zeng, W. Zheng, M. Di Natale, A. Ghosal, P. Giusto, and
A. Sangiovanni-Vincentelli. Scheduling the FlexRay Bus Using Opti-
mization Techniques. In Proceedings of the 46th IEEE ACM Design
Automation Conference, 2009.


