
Info-Gap Economics: An Overview

Yakov Ben-Haim1

Contents

1 Introduction 3

2 What is Info-Gap Theory? 4

I Decision Strategies 6

3 Monetary Policy with a Linear Model 6
3.1 Goals, Models, Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Crossing of Robustness Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Min-Max, Robust Control and Robust-Satisficing . . . . . . . . . . . . . . . . . . . . . 9
3.5 Probability of Success . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.5.1 Upper Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5.2 Lower Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5.3 Two-Sided Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.6 Robustness as a Proxy for Probability of Success . . . . . . . . . . . . . . . . . . . . . 11
3.6.1 One-Sided Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.6.2 Two-Sided Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.7 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 A Proxy Theorem for Non-Linear Models 14

5 Modelling Uncertain Systems 15
5.1 Robustness of the Least-Squares Estimate . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Info-Gap Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

II Economic Behavior 19

6 The Equity Premium Puzzle and Robust-Satisficing 19
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 Dynamics, Uncertainty and Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.3 Asset-Pricing Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.4 Equity Premium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.5 Robustness and the Probability of Success . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

0\papers\BoE2008\ige03.tex. 22.5.2008. c⃝ Yakov Ben-Haim 2008.
1Yitzhak Moda’i Chair in Technology and Economics, Technion — Israel Institute of Technology, Haifa 32000 Israel,

yakov@technion.ac.il.
The author is indebted to valuable comments by Maria Demertzis and Joe Moffitt.
The paper was presented in part at the Research Forum on “Risk and Uncertainty in Monetary Policy”, Centre for

Central Bank Studies, Bank of England, London, 9–11 June 2008.

1



7 Demand Theory: Satisficing and Windfalling 25
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2 Consumer Choice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7.2.1 Classical Choice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.2.2 Info-Gap Models of Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.2.3 Robustness and Opportuneness . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.2.4 Info-Gap Choice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.3 Price-Demand Antagonism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.4 Wealth-Compensated Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.5 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

III Conclusion 35

8 Positivism, F-twist, and Robust-Satisficing 35
8.1 Friedman and Samuelson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.2 Shackle-Popper Indeterminism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.3 Methodological Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9 What Next? 38

10 References 40

A Proofs for Section 3 43

B Proofs for Section 4 43

C Derivation for Section 5 44

D Proofs for Section 7 45

2



1 Introduction

Economists focus on two great questions: “What should be done?” and “Why didn’t it work?”.2

Part I of this paper addresses the first question, by studying the application of info-gap decision
theory to the formulation and evaluation of decisions in economics. We construe “decisions” broadly,
to include policy decisions as well as decisions on how to model and forecast economic processes. In
part I we view modelling as a decision process in which we choose variables, relations, dimensions, and
so on, with the aim of subsequently predicting behavior or choosing a policy. We begin by studying
policy formulation given a linear model of the economic system (section 3). We introduce the robust-
satisficing decision strategy, which satisfices the outcome at an acceptable level and maximizes the
immunity against Knightian uncertainty. The main contention is that robust-satisficing is different
from, and often more reliable than, optimizing the outcome based on a best-estimate of the underlying
process. This thesis is strengthened when a “proxy theorem” holds. A proxy theorem asserts that the
info-gap robustness is a proxy for successfully achieving the policy goals: any increase in robustness
also increases the probability of success. When a proxy theorem holds, the policy maker can maximize
the probability of success without knowing the underlying probability distributions at all. This is
particularly important in formulating policy under Knightian uncertainty, where probabilities are
unknown. Two different proxy theorems are developed (sections 3.6 and 4). In section 5 we illustrate
the info-gap approach to modelling by studying the problem of estimating the slope of a Phillips
curve. We show that robust-satisficing estimates are more robust to uncertainty in the underlying
economics than least-squares estimation of historical data.

In part II we view modelling in the more conventional “scientific” sense of understanding and
describing the behavior of economic agents. The main contention is that the neo-classical axiom of
rationality—maximization of utility—is not necessary for a coherent and successful understanding
of economic behavior. We look at two specific examples. In section 6 we study the equity premium
puzzle. By deriving an info-gap generalization of the Lucas asset pricing relations we come to an
understanding of observed premia of risky assets. The explanation hinges on the hypothesis that
investors need to reliably achieve satisfactory (rather than maximal) returns, which are achieved
with greatest likelihood by using a robust-satisficing strategy because a proxy theorem holds. In
section 7 we formulate an info-gap approach to the micro-economics of demand. We derive and study
the properties of demand functions using both the robust-satisficing and the opportune-windfalling
strategies. We derive two distinct demand functions and show that they display the features of the
Hicksian and Walrasian demand functions.

It is widely believed that good decision-making depends on good understanding of the processes
which are influenced by the decisions. This is true in part, but not entirely. Indeed, economics has
begun to outgrow 19th century positivistic idealism which taught that science converges on truth,
and truth enables control. Positivism would have us first study economic behavior (part II) and then
develop decision strategies (part I). This may work, more or less, in science-based technology, but it is
less successful in social science. In part III, section 8, we touch on some fundamental methodological
issues underlying the info-gap approach to economics, by discussing a debate between Friedman and
Samuelson.

Before beginning our study we present a brief intuitive discussion of info-gap decision theory in
section 2. We conclude with an outline of some further lines of research in section 9. Proofs and
derivations appear in the appendices.

2Of course sometimes policies do succeed, but that is usually a cause for celebration rather than introspection.
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2 What is Info-Gap Theory?

Info-gap theory is a methodology for supporting model-based decisions under severe uncertainty
(Ben-Haim, 2006). An info-gap is a disparity between what is known, and what needs to be known
in order to make a comprehensive and reliable decision. An info-gap is resolved when a surprise
occurs, or a new fact is uncovered, or when our knowledge and understanding change. We know
very little about the substance of an info-gap. For instance, we rarely know what unusual event will
delay the completion of a task. Even more strongly, we cannot know what is not yet discovered,
such as tomorrow’s news, or future scientific theories or technological inventions. The ignorance of
these things are info-gaps. An info-gap is a Knightian uncertainty (Knight, 1921) since it is not
characterized by a probability distribution.

Info-gap decision theory is based on three elements. The first element is an info-gap model of
uncertainty, which is a non-probabilistic quantification of uncertainty. The uncertainty may be in the
value of a parameter, such as the slope of the Phillips curve, or in a vector such as the future returns
on a portfolio of investments. An info-gap may in the shape of a function, such as demand vs. price,
or the shape of the tail of the probability distribution function (pdf) of extreme financial loss. An
info-gap may be in the size and shape of a set of such entities, such as the set of possible pdf’s or the
set of possible Phillips curves. We will encounter many examples of info-gap models of uncertainty.
In all cases an info-gap model is an unbounded family of nested sets of possible realizations. For
instance, if the uncertain entity is a function then the info-gap model is an unbounded family of
nested sets of realizations of this function. An info-gap model does not posit a worst case or most
extreme uncertainty.3

The second element of an info-gap analysis is a model of the system, such as a macroeconomic
model, or a capital asset pricing model. The model expresses our knowledge about the system, and
may also depend on uncertain elements whose uncertainty is represented by an info-gap model of
uncertainty. The system model also depends on the decisions to be made, and quantifies the outcomes
of those decisions given specific realizations of the uncertainties. For instance, the model may express
macroeconomic outcomes such as inflation, unemployment, growth of the GDP, and so on.

The third element of an info-gap analysis is a set of performance requirements. These specify
values of the outcomes which the decision maker requires or aspires to achieve. These values may
constitute success of the decision, or at least minimally acceptable values. For instance, inflation
targeting is sometimes formulated as a range of inflation values which are acceptable. Performance
requirements can embody the concept of satisficing: doing good enough or meeting critical require-
ments. Alternatively, the performance requirements can express windfall aspirations for better-than-
anticipated outcomes. We will encounter examples of both satisficing and windfalling requirements,
though satisficing requirements are the most common.

These three components—uncertainty model, system model, and performance requirements—are
combined in formulating two decision functions which support the choice of a course of action.

The robustness function assesses the greatest tolerable horizon of uncertainty. The robustness
function is a quantitative answer to the question: how wrong can we be in our data, models and
understanding, and the action we are considering will still lead to an acceptable outcome. The ro-
bustness function is based on a satisficing performance requirement. When operating under severe
uncertainty, a decision which achieves an acceptable outcome over a large range of uncertain realiza-
tions is preferable to a decision which fails to achieve an acceptable outcome even under small error.
In this way the robustness function generates preferences on available decisions.

The opportuneness function assesses the lowest horizon of uncertainty which is necessary for
better-than-anticipated outcomes to be possible (though not guaranteed). The windfalling decision
maker asks: how wrong must we be in order for quite attractive outcomes to be possible? The

3Sometimes the family of sets is bounded by virtue of the definition of the uncertain entity. For instance, a probability
must be between zero and one, so the family of nested sets of possible probability values is bounded. However, this
bound does not derive from knowledge about the event whose probability is uncertain, but only from the mathematical
definition of probability. Such an info-gap model is unbounded in the universe of probability values.
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opportuneness function is based on windfalling rather than satisficing. When operating under severe
uncertainty it is possible that best-model anticipations are overly pessimistic; the windfaller seeks
to exploit the ambient uncertainty. A decision which would result in a really wonderful outcome if
we err only slightly is preferred (by the windfaller) over a decision which requires great deviation in
order to enable the same outcome. The opportuneness function thus generates preferences over the
available decisions. These preferences may not agree with the preferences generated by the robustness
function.

Info-gap theory originated in engineering and has since been applied to a wide range of disciplines
(Ben-Haim, 1996, 2006). Burgman (2005) devotes a chapter to info-gap theory as a tool for biological
conservation and environmental management. Regan et al (2005) use info-gap theory to devise a
preservation program for an endangered rare species. McCarthy and Lindenmayer (2007) use info-
gap theory to manage commercial timber harvesting that competes with urban water requirements.
Knoke (2007) uses info-gap theory in a financial model for forest management. Carmel and Ben-Haim
(2005) use info-gap theory in a theoretical study of foraging behavior of animals. Ben-Haim and Jeske
(2003) use info-gap theory to explain the home-bias paradox. Ben-Haim (2006) uses info-gap theory
to study the equity premium puzzle (Mehra and Prescott, 1985) and the paradoxes of Ellsberg (1961)
and Allais (see Mas-Colell, Whinston and White, 1995). Akram et al (2006) use info-gap theory in
formulating monetary policy. Fox et al (2007) study the choice of the size of a statistical sample when
the sampling distribution is uncertain. Klir (2006) discusses the relation between info-gap models of
uncertainty and a broad taxonomy of measure-theoretic models of probability, likelihood, plausibility
and so on. Moffitt et al (2006) employ info-gap theory in designing container-inspection strategies for
homeland security of shipping ports. Pierce et al (2006) use info-gap theory to design artificial neural
networks for technological fault diagnosis. Kanno and Takewaki (2006a, b) use info-gap theory in the
analysis and design of civil engineering structures. Pantelides and Ganzerli (1998) study the design
of trusses and Ganzerli and Pantelides (2000) study the optimization of civil engineering structures.
Ben-Haim and Laufer (1998) and Regev et al (2006) apply info-gap theory for managing uncertain
task-times in projects. Ben-Haim and Hipel (2002) use info-gap theory in a game-theoretic study of
conflict resolution.

Thus, info-gap decision theory has been used productively to model and manage circumstances
of extreme uncertainty in a wide variety of different contexts and disciplines. We now proceed to
study a range of economic applications.
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Part I

Decision Strategies

3 Monetary Policy with a Linear Model

We now encounter our first example of an info-gap decision analysis. We have a linear economic model
(the system model) whose outcome we wish to control (which defines several possible performance
requirements). The coefficients of the economic model are uncertain which is represented with an
info-gap model of uncertainty. We study the ideas of info-gap robustness and probability of success
as tools for evaluating and selecting a policy. Specifically, we develop the following ideas:

• Formulate an info-gap model for uncertainty in a linear economic model, and derive robustness
functions for one-sided and two-sided targets (sections 3.1 and 3.2).

• Prove and discuss a proposition asserting that these robustness curves cross one another (sec-
tion 3.3). This implies that a policy which is optimal based on an estimated model may be less
robust than other policies, which has important implications for policy selection.

• Discuss the relation between the robust-satisficing strategy and the class of strategies various
known as min-max, robust control or worst case analysis (section 3.4).

• Define the probability of success (section 3.5).

• Prove a proposition showing that each one-sided robustness is a proxy for the corresponding
probability of success. This has the important implication that the policy maker can maximize
the probability of success, without knowing the probability distribution, by maximizing the
robustness to uncertainty. This depends on the concept of ‘standardization’ (section 3.6.1).

• Show that the two-sided robustness is not usually a proxy for the probability of success, and
explain why this is so. This emphasizes the motivation for decision makers to prefer one-sided
targets when selecting policy (section 3.6.2).

• Discuss briefly the implications for learning by the decision maker (section 3.7).

3.1 Goals, Models, Uncertainties

Consider a linear model whose response, y, depends on model coefficients c and control variables v:

y = cT v (1)

y could be any economic variable, for instance, y might be the output gap.
The goal is to control the range of variation of y, and we consider three different specifications:

y ≤ yc, y ≥ −yc, |y| ≤ yc (2)

Intuitively, the decision maker would be interested in the first condition when concerned about over-
shoot of the output gap. Likewise, concern about under-performance would focus attention on the
second condition, while the third condition treats both types of errors equivalently.

We can immediately appreciate one of the challenges facing decision makers, by noting that the
goals in eq.(2) tend to conflict with one another. A strategy which moves y below and away from yc,
brings y closer to −yc. As long as the analyst is concerned only with either the first or the second
goal, but not both, this conflict is not problematic. However, this conflict of goals in inherent in the
third strategy, which we will see to have important repercussions when focussing on the third goal.

We will consider an info-gap model for uncertainty in the model coefficients c. An info-gap
model is an unbounded family of nested sets of coefficients. Two common examples are the interval-
uncertainty and ellipsoidal-uncertainty models:

U(h) = {c : |ci − c̃i| ≤ sih, ∀ i} , h ≥ 0 (3)

U(h) =
{
c : (c− c̃)TS−1(c− c̃) ≤ h2

}
, h ≥ 0 (4)

The si’s are non-negative and S is a positive definite symmetric matrix.
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3.2 Robustness

Each of the three conditions in eq.(2) generates a robustness function, which is the greatest horizon
of uncertainty, h, up to which the corresponding condition is satisfied for all realizations of the model
parameters:

ĥ+(v, yc) = max

{
h :

(
max
c∈U(h)

y

)
≤ yc

}
(5)

ĥ−(v, yc) = max

{
h :

(
min

c∈U(h)
y

)
≥ −yc

}
(6)

ĥ(v, yc) = max

{
h :

(
max
c∈U(h)

|y|
)

≤ yc

}
(7)

The robustness is a property of the control vector v and the performance requirement yc. A large value
of robustness means that the performance is achieved by the control even if the model coefficients
deviate greatly from their estimated values. Large robustness implies confidence in the outcome; low
robustness implies lack of confidence.

Since both the upper and lower inequalities must be satisfied in the overall robustness, it is clear
that:

ĥ(v, yc) = min{ĥ−, ĥ+} (8)

We define the estimated value of y as ỹ = c̃T v. Also, we will say that the info-gap model, U(h), is
linearly symmetric if there is a non-negative function, θ(v), independent of the horizon of uncertainty
h, such that:

max
c∈U(h)

y = ỹ + hθ(v) and min
c∈U(h)

y = ỹ − hθ(v) (9)

A linearly symmetric info-gap model expands linearly with increasing horizon of uncertainty, h, so
that the functions in eq.(9) are linear in h. The info-gap model is symmetric in the sense that the
same function, θ(v), applies to both the ‘min’ and the ‘max’.4

For instance, for the unbounded-interval info-gap model, eq.(3), one finds:

θ(v) = sT |v| (10)

where |v| is the vector formed by replacing each element of v by its absolute value. Similarly, for the
ellipsoidal info-gap model in eq.(4):

θ(v) =
√
vTSv (11)

One can readily show that, for linearly symmetric info-gap models:

ĥ+ =
yc − ỹ

θ
(12)

ĥ− =
yc + ỹ

θ
(13)

ĥ =
yc − |ỹ|

θ
(14)

where ĥ+, ĥ− or ĥ is defined to equal zero if the corresponding expression, eq.(12), (13) or (14), is
negative. Eqs.(8), (12) and (13) are equivalent to eq.(14).

4For what follows, the linearity is more important than the symmetry. If a different θ(v)-function holds for the ‘min’
and the ‘max’, say θ−(v) and θ+(v), then our results remain much the same, though they are notationally a bit more
cumbersome.
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3.3 Crossing of Robustness Curves

The following proposition, whose proof appears in appendix A, asserts a necessary and sufficient
condition for robustness curves to cross one another for different choice of the control variables v.

Proposition 1 Robustness curves for two different control vectors cross one another if and only if
the control which is estimated to be more favorable, has greater sensitivity to uncertainty.

Given that the info-gap model is symmetric, so that the robustness functions are specified in
eqs.(12)–(14).

Then these robustness curves, evaluated for two different control vectors v and v′, cross at a
single positive value of yc (illustrated in figs. 1–3) if and only if:

For ĥ+ :
[
θ(v)− θ(v′)

] [
ỹ(v)− ỹ(v′)

]
≤ 0 and θ(v) ̸= θ(v′) (15)

For ĥ− :
[
θ(v)− θ(v′)

] [
ỹ(v)− ỹ(v′)

]
≥ 0 and θ(v) ̸= θ(v′) (16)

For ĥ :
[
θ(v)− θ(v′)

] (
|ỹ(v)| − |ỹ(v′)|

)
≤ 0 and θ(v) ̸= θ(v′) (17)

They cross at positive robustness if and only if the inequality, ‘≤’ or ‘≥’, is strict ‘<’ or ‘>’.

-

6

ỹ ỹ′

v

v′

0

ĥ+(v, yc)

yc -

6

−ỹ −ỹ′

v

v′

0

ĥ−(v, yc)

yc -

6

|ỹ| |ỹ′|

v

v′

0

ĥ(v, yc)

yc

Figure 1: Crossing of upper-
robustness curves, ĥ+. ỹ ≡
ỹ(v) and ỹ′ ≡ ỹ(v′) and
θ(v) > θ(v′).

Figure 2: Crossing of lower
robustness curves, ĥ−.

Figure 3: Crossing of total
robustness curves, ĥ.

Fig. 1 illustrates proposition 1 for ĥ+. (Figs. 2 and 3 illustrate the proposition for ĥ− and for ĥ.)
Controls v are more favorable than v′, based on the estimated model c̃, since y(v) < y(v′), causing
ĥ+(v, yc) to sprout off the yc- axis to the left of ĥ+(v

′, yc). However, v is more sensitive to error as
expressed by its lower robustness due to θ(v) > θ(v′). This causes ĥ+(v, yc) to have lower slope than
ĥ+(v

′, yc). Thus the robustness curves cross.
The crossing of robustness curves has important implications. First of all, crossing of robustness

curves implies the potential for reversal of preference between policies for a robust-satisficing decision
maker. Let y× denote the value of yc at which the curves cross. If the decision maker requires yc < y×,
then v is preferred over v′ because v is more robust in this range of yc values; requiring yc > y×
implies the reverse preference.

Second, the robustness curves of quite different policies can cross. When v and v′ are very
different, the preference reversal will be between substantially different policy options, one of which
is likely to be substantially more aggressive than the other. That is, as the critical loss, yc, varies,
there can be large and sudden change or bifurcation in policy preference. Sometimes the more robust
policy will be more aggressive, and sometimes not.

Third, by comparing eqs.(15) and (16) we see that for any pair of controls, v and v′, for which
the upper robustness curves do cross, the lower robustness curves do not cross, unless ỹ(v) = ỹ(v′)
which means that the intersection is at zero robustness. The reverse is also true: if the ĥ− curves
cross, then the ĥ+ curves do not. Since crossing of robustness curves entails preference reversal,
we see that policy preferences for upper and lower targets (first and second constraints in eq.(2))
can differ substantially. This is another indication that the two-sided policy target (third constraint

8



in eq.(2)) is problematic: it involves both lower- and upper-constraints, and these constraints can
induce different preferences.

3.4 Min-Max, Robust Control and Robust-Satisficing

We take a brief intermezzo to compare the robust-satisficing strategy with a class of alternatives. The
terms ‘min-max’, ‘robust control’ and ‘worst-case’ refer to a collection of decision strategies which
attempt to ameliorate a maximally adverse outcome. This can of course be formulated in a variety
of ways. In one form or another, either explicitly or implicitly, a greatest level of uncertainty or a
worst possible outcome is posited. Then a strategy is sought which maximally diminishes the impact
of this worst outcome.

Info-gap robust-satisficing is motivated by the same perception of uncertainty which motivates
the min-max class of strategies: lack of reliable probability distributions and the potential for severe
and extreme events. We will see that the robust-satisficing decision will sometimes coincide with a
min-max decision. On the other hand we will identify some fundamental distinctions between the
min-max and the robust-satisficing strategies and we will see that they do not always lead to the
same decision.

First of all, if a worst case or maximal uncertainty is unknown, then the min-max strategy cannot
be implemented. That is, the min-max approach requires a specific piece of knowledge about the
real world: “What is the greatest possible error of the analyst’s model?”. This is an ontological
question: relating to the state of the real world. In contrast, the robust-satisficing strategy does
not require knowledge of the greatest possible error of the analyst’s model. The robust-satisficing
strategy centers on the vulnerability of the analyst’s knowledge by asking: “How wrong can the
analyst be, and the decision still yields acceptable outcomes?” The answer to this question reveals
nothing about how wrong the analyst in fact is or could be. The answer to this question is the info-gap
robustness function, while the true maximal error may or may not exceed the info-gap robustness.
This is an epistemic question, relating to the analyst’s knowledge, positing nothing about how good
that knowledge actually is. The epistemic question relates to the analyst’s knowledge, while the
ontological question relates to the relation between that knowledge and the state of the world. In
summary, knowledge of a worst case is necessary for the min-max approach, but not necessary for
the robust-satisficing approach.

The second consideration is that the min-max approaches depend on what tends to be the least
reliable part of our knowledge about the uncertainty. Under Knightian uncertainty we do not know
the probability distribution of the uncertain entities. We may be unsure what are typical occurrences,
and the systematics of extreme events are even less clear. Nonetheless the min-max decision hinges
on ameliorating what is supposed to be a worst case. This supposition may be substantially wrong,
so the min-max strategy may be mis-directed.

A third point of comparison is that min-max aims to ameliorate a worst case, without worrying
about whether an adequate or required outcome is achieved. This strategy is motivated by severe
uncertainty which suggests that catastrophic outcomes are possible, in conjunction with a precau-
tionary attitude which stresses preventing disaster. The robust-satisficing strategy acknowledges
unbounded uncertainty, but also incorporates the outcome requirements of the analyst. The choice
between the two strategies—min-max and robust-satisficing—hinges on the priorities and preferences
of the analyst.

The fourth distinction between the min-max and robust-satisficing approaches is that they need
not lead to the same decision, even starting with the same information.

Consider the robustness curves in fig. 1, which are reproduced in fig. 4. We must choose between
two alternative decisions, v and v′, whose robustness curves are shown in the figure. Suppose that
the greatest possible horizon of uncertainty in the analyst’s models is known to be hmax as shown
in fig. 4. This knowledge allows us to implement the min-max strategy. The min-max choice is v′

rather than v since v′ has a less adverse worst possible outcome, ymm.
Now suppose that the analyst requires that the outcome be no worse than the value yrs where yrs

9
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hmax

ymm

ĥ+(v, yrs)

yrs

v

v′
ĥ+(v, yc)

yc

Figure 4: Crossing of upper-robustness curves,
ĥ+. Modified from fig. 1.

is not only less than ymm but also less than the value at which the robustness curves cross, as shown
in fig. 4. The robust-satisficing choice, given this performance requirement, is v rather than v′ since
v guarantees that the outcome will be less than yrs for a wider range of uncertainty than does v′.
The robust-satisficing analyst acknowledges that the outcome could be as bad as ymm, and could be
worse with v than with v′ for large uncertainty. The robust-satisficer chooses v since it guarantees
the required outcome for a wider range of contingencies than does v′.

Fifth and finally, when a proxy theorem holds (as will be shown in section 3.6 to be the case
for this particular problem) then the robust-satisficing choice v is in fact more likely to achieve the
requirement, y ≤ yrs, than is the min-max choice v′.

3.5 Probability of Success

In this section we define the probability of success for each of the three targets. In the next section
we study the relation between the robustness and the probability of success.

3.5.1 Upper Robustness

Define the set of all values of the model coefficients, c, which do not violate the condition y ≤ yc in
the upper robustness ĥ+:

Λ+ = {c : y ≤ yc} (18)

=

{
c :

y − ỹ

θ
≤ yc − ỹ

θ

}
(19)

=
{
ζ : ζ ≤ ĥ+

}
(20)

provided that ĥ+ is not zero, and where we have defined the “standardized” variable ζ = (y − ỹ)/θ.
If we think of c as a random vector, then y and ζ are both random variables. Let Z(ζ) denote

the cumulative probability distribution (cdf) of ζ, with probability density function (pdf) z(ζ). The
probability that y ≤ yc is the “probability of success” for which ĥ+ is the robustness. This probability
is:

Ps+ = Z(ĥ+) (21)

3.5.2 Lower Robustness

We now do something similar for the lower robustness.
Define the set of all c-vectors which do not violate the condition y ≥ −yc in the lower robustness

ĥ−:

Λ− = {c : y ≥ −yc} (22)

10



=

{
c :

y − ỹ

θ
≥ −yc + ỹ

θ

}
(23)

=
{
ζ : ζ ≥ −ĥ−

}
(24)

provided that ĥ− is not zero.
The probability that y ≥ −yc is the probability of success for which ĥ− is the robustness. This

probability is:
Ps− = 1− Z(−ĥ−) (25)

3.5.3 Two-Sided Robustness

Define Λ as the set of all c-vectors which satisfy the requirement |y| ≤ yc:

Λ = {c : |y| ≤ yc} (26)

=

{
c : −yc + ỹ

θ
≤ y − ỹ

θ
≤ yc − ỹ

θ

}
(27)

=
{
ζ : −ĥ− ≤ ζ ≤ ĥ+

}
(28)

Let ℜ be the set of all real numbers. The complement of Λ− is Λc = ℜ − Λ−. Comparing eqs.(20),
(24) and (28) we find:

Λ = Λ+ − Λc (29)

We can express the probability of success, for the two-sided target, as:

Ps = Z(Λ) (30)

= Z(Λ+)− Z(Λc) (31)

= Ps+ − (1− Ps−) (32)

3.6 Robustness as a Proxy for Probability of Success

We defined the goals, models and uncertainties in section 3.1. In sections 3.2 and 3.3 we defined
the robustness and showed that robustness curves cross. In section 3.5 we defined the probability of
success of a policy. We now use the statistical concept of ‘standardization’ to explore the relation
between robustness and probability of success. We will show that, when the standardization condition
holds, each one-sided robustness function is a proxy for the probability of success. This means that
any change in the policy augments the robustness if and only if it also augments (or at least does
not reduce) the probability of success. We will see that this is not true for the two-sided robustness
function, which is related to the inherent conflict between the two sides in the absolute inequality
which the two-sided robustness tries to control. When the proxy property holds, (as it does for the
one-sided robustnesses), the policy maker can maximize the probability of success by maximizing the
robustness, even if the probability distribution is entirely unknown. The value of the probability of
success will be unknown, but maximal. This makes the robustness function a powerful tool for policy
selection.

3.6.1 One-Sided Robustness

We first introduce a definition. Let x be a scalar random variable with distribution P (x|q) which
depends on parameters q. The distribution P (x|q) varies over a class of distributions as q varies over
a set of allowed values. For instance, q would contain the mean and variance of a normal distribution,
or the least and greatest values of a uniform distribution on the interval [a, b]. Let ζ be a one-to-one
transformation of x whose distribution Z(ζ) does not depend on the parameters q. For instance,
Z(ζ) could be the standard normal distribution, or the uniform distribution on the interval [0, 1].
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P (x|q) is a standardization class,5 and x obeys the standardization condition, if Z(ζ) is the same
distribution for all valid choices of q. For instance, the normal distributions form a standardization
class since every normal variate, when standardized by its mean and variance, becomes a standard
normal variate. Similarly the uniform distributions form a standardization class.

In our specific case, ζ = (y− ỹ)/θ, defined following eq.(20), obeys the standardization condition
if its cdf does not depend on the control vector v. That is, the standardization condition requires
that, while y depends on the control vector v, the distribution of the standardized variable, Z(ζ),
does not. Many distinct classes of distributions obey standardization conditions. We do not know
which class Z(ζ) belongs to. By assuming standardization in our specific case we are assuming two
things. First, we assume that the variability of y = cT v can be represented by a standardizable
distribution. Second, we assume that the info-gap model for uncertainty in the model coefficients
c contains enough information about the variability of c to properly standardize y. Specifically, we
assume that ỹ and θ—which result from the info-gap model—do in fact standardize y.

We can now state the following proposition, whose proof appears in appendix A, which asserts
that each one-sided robustness, ĥ+ and ĥ−, is a proxy for the corresponding probability of success
if ζ obeys standardization. That is, any change in v which augments a one-sided robustness, also
augments (or at least does not reduce) the probability of satisfying the corresponding requirement.
Likewise, any change in v which reduces the robustness also reduces (or at least does not augment)
the probability of success.

Proposition 2 Each one-sided robustness is a proxy for the probability of one-sided success, if the
associated random variable is standardized.

Given:
• The linear system of eq.(1).
• The info-gap model is linearly symmetric, so the upper and lower robustnesses are given by

eqs.(12) and (13).
• The random variable ζ = (y− ỹ)/θ obeys the standardization condition, so its pdf is independent

of the control vector v.
Then: The robustness functions ĥ+(v, yc) and ĥ−(v, yc) are each a proxy for the corresponding

probability of one-sided success. For each element, vi, of the control vector:(
∂Ps×
∂vi

)(
∂ĥ×(v, yc)

∂vi

)
≥ 0 (33)

where “×” is either “+” or “−”.

3.6.2 Two-Sided Robustness

In this section we will understand why the two-sided robustness, ĥ, is generally not a proxy for the
probability of two-sided success, and furthermore why analysts should be motivated to choose one of
the one-sided targets and to use the corresponding robustness function for policy selection. This is
a continuation of the discussion of conflicting goals in sections 3.1 and 3.3.

If we assume that the standardization condition holds, then eqs.(32), (102) and (104) (from
appendix A) imply:

∂Ps

∂vi
=

∂Ps+

∂vi
+

∂Ps−
∂vi

(34)

= z(ĥ+)
∂ĥ+
∂vi

+ z(−ĥ−)
∂ĥ−
∂vi

(35)

We see from eq.(8) that ∂ĥ/∂vi equals either ∂ĥ+/∂vi or ∂ĥ−/∂vi. Thus a sufficient (though not
necessary) condition for ĥ to be a proxy for Ps is that ∂ĥ+/∂vi and ∂ĥ−/∂vi have the same algebraic

5The idea of a standardization class has been used previously to derive a proxy theorem. See Ben-Haim (2006,
section 11.4).
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sign. However, from eqs.(12) and (13) one finds:

∂ĥ−
∂vi

= −∂ĥ+
∂vi

− 2yc
θ2

(36)

where we note that 2yc/θ
2 ≥ 0. Thus, if either partial derivative is positive, then the other must be

negative and of greater absolute value. We conclude that the condition that both derivatives have
the same sign will not always hold, and may frequently fail to hold. In fact, we can understand from
eqs.(35) and (36) that ĥ will often not be a proxy for the probability of two-sided success. This is
because policy-changes which improve success on one side will tend to reduce success on the other
side. This motivates the analyst to decide which direction of error is more important, and to use
the corresponding one-sided robustness function for policy selection. Proposition 2 asserts that each
one-sided robustness is a proxy for the corresponding probability of success.

3.7 Learning

The proxy theorem, proposition 2, depends critically on the assumption of standardization. As
explained earlier, this in turn depends on the info-gap model containing enough information about
the random variability of the model coefficients c in order for ζ to be correctly standardized. (It does
not require knowing the identity of the standardization class.) For instance, suppose θ in eq.(10) is
the wrong normalization, and the correct normalization is eq.(11). This latter normalization would
result from exactly the same analysis with the info-gap model in eq.(4) rather than eq.(3).

The validity of the proxy theorem is what assures that robust-satisficing policies are most likely
to succeed. (This is particularly important since, from proposition 1, we know that robust-satisficing
policies may differ from expected-model optimal strategies.) The decision maker who is able to learn
how to standardize c, will be able to maximize the probability of success. This does not require
learning the correct cdf of c, or even what standardization class it belongs to. It is sufficient for
the non-probabilistic info-gap model to capture enough information about the variability of c to
enable correct standardization of ζ. This minimal learning is a self-reenforcing process, since correct
standardization leads the robust-satisficing decision maker to succeed more than any other decision
maker.
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4 A Proxy Theorem for Non-Linear Models

In this section we consider a situation in which we can prove a much stronger proxy theorem than
proposition 2 in section 3.6, but at a cost. By assuming that the uncertainty in the model is contained
in a single variable, and that the response, y, is monotonic in this variable, then one-sided robustness
is a proxy for probability of success without requiring that the model be linear or that the standard-
ization condition hold. This is of both practical and theoretical importance. Practically, when a proxy
theorem holds, policy makers can choose actions which maximize the probability of achieving their
goals, without actually knowing the governing probability distributions. Theoretically, the existence
of a proxy theorem can explain the persistence of otherwise anomalous behavior: robust-satisficing
rather than outcome-optimizing behavior persists under uncertain competition when maximization
of robustness is equivalent to maximization of the probability of success. We will see an example in
section 6 when we study the equity premium puzzle.

Consider a model whose response, y(x, v), is a scalar-valued function which depends on a single
uncertain scalar, x, as well as a vector of control variables v. For instance, this might be the linear
model of eq.(1) where the uncertainty in the model coefficients c(x) all derive from uncertainty in x.
Or, in the linear model of eq.(1), only one of the model coefficients is uncertain and all the rest are
known. However, y(x, v) does not have to be linear at all.

Let x̃ be our best estimate of x, and consider the following unbounded-interval info-gap model
for uncertainty in x:

U(h) = {x : x̃− hσ1 ≤ x ≤ x̃+ hσ2} , h ≥ 0 (37)

where σ1 and σ2 are known non-negative numbers.
The robustnesses for the three requirements in eq.(2) are defined in analogy to eqs.(5)–(7):

ĥ+(v, yc) = max

{
h :

(
max
x∈U(h)

y(x, v)

)
≤ yc

}
(38)

ĥ−(v, yc) = max

{
h :

(
min

x∈U(h)
y(x, v)

)
≥ −yc

}
(39)

ĥ(v, yc) = max

{
h :

(
max
x∈U(h)

|y(x, v)|
)

≤ yc

}
(40)

The probabilities of success are defined in terms of the following sets:

Λ+ = {x : y(x, v) ≤ yc} (41)

Λ− = {x : y(x, v) ≥ −yc} (42)

Λ = {x : |y(x, v)| ≤ yc} (43)

Let F (x) denote the cdf of x. The probabilities of success, Ps+, Ps− and Ps, are evaluated as
F (Λ+), F (Λ−) and F (Λ), respectively.

We can now state the following proposition, whose proof appears in appendix B.

Proposition 3 Robustness is a proxy for probability of success if the response depends monotonically
on a single scalar uncertainty.

Given:
• The system response, y(x, v), is scalar-valued and depends on a single uncertain scalar, x, and

a control vector or function v.
• y(x, v) is monotonic in x at any fixed v.
• The info-gap model for x is eq.(37), which does not depend on the control.
• Given two controls, v and v′, each with finite one-sided robustness.
Then: One-sided robustness is a proxy for probability of success:

ĥ×(v
′, yc) < ĥ×(v, yc) implies Ps×(v

′) ≤ Ps×(v) (44)

where “×” is either “+” or “−”.
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5 Modelling Uncertain Systems

4 4.5 5 5.5 6 6.5 7
0.5

1

1.5

2

2.5

3

3.5

Unemployment, civilian rate, %

In
fla

tio
n,

 C
P

I, 
%

 p
.a

.

1961

1967

4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

Unemployment, civilian rate, %

In
fla

tio
n,

 C
P

I, 
%

 p
.a

.

1961

1968

1972

1974

1980

1983

1990

Figure 5: Inflation vs. unemployment in
the US, 1961–1967.

Figure 6: Inflation vs. unemployment in
the US, 1961–1993.

The trade-off between inflation and unemployment for the US, from 1961 to 1967, is roughly
linear, as shown in fig. 5. The least-squares fit shown in the figure has a slope of −0.87 %CPI/%un-
employment. Data from 1961 through 1993 are shown in fig. 6. If we consider the years 1980–1983
the slope of the least-squares fit is −3.34, and for the years 1985–1993 the slope is −1.08. In short, the
trade-off between inflation and unemployment is often linear over moderate durations but the slope
varies substantially over time, and for some periods, for instance 1970–1978, the relation between
inflation and unemployment is not linear at all.

Data like this raise several questions. How should we model uncertain economic processes? How
can we formulate and calibrate models from historical data to meaningfully predict or describe future
behavior? How do we evaluate the confidence in historically calibrated models, when we use them
for formulating policy which will be implemented in the future?

We will illustrate an info-gap approach to these questions by studying the estimation of the slope
of the Phillips curve based on data from fig. 6. In section 5.1 we use the least-squares estimate of
the slope and study its robustness to error in the data. In section 5.2 we explore robust-satisficing
estimates—which are sub-optimal in terms of fidelity to the data—but which have acceptable fidelity
and greater robustness to uncertainty in the data than the least-squares estimate.

5.1 Robustness of the Least-Squares Estimate

In this section we consider the robustness of the least-squares estimate of the slope of the Phillips
curve, to uncertainty in the inflation and unemployment data.

Consider a set of observations of CPI inflation ci and unemployment ui, for i = 1, . . . , n, such as
shown in figs. 5 and 6. The least-squares estimate of the slope of a linear regression of ci against ui
is the ratio of the covariance of c and u, to the variance of u:

s =
cov(u, c)

var(u)
(45)

where:

cov(u, c) =
1

n

n∑
i=1

ciui −
(
1

n

n∑
i=1

ci

)(
1

n

n∑
i=1

ui

)
(46)

and var(u) = cov(u, u).
The data vectors, u and c, are highly uncertain in two senses. First, estimates of past inflation

and unemployment can change over time due to revision of the underlying data or modification of the
definition of inflation or unemployment. Second, historical values are uncertain estimates of future
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values because of the possibility of structural changes in the economy. Given observed data, ũ and c̃,
we can estimate the slope of the Phillips curve with eq.(45). We would like to know how robust this
estimate is to uncertainty in the data. How much could the data change, without unduely altering
the estimated trade-off between inflation and unemployment? If the estimate is highly robust to
uncertainty then we have confidence in the estimate, while low robustness suggests low confidence.

A full info-gap analysis of robustness would entail formulating an info-gap model for uncertainty
in the data vectors u and c. The purpose of the present analysis is to illustrate info-gap estimation,
so we will take a simpler route, and consider uncertainty only in the covariance and variance of the
data.

Let us denote the estimated variance of u by σ̃2, and the estimated covariance of c and u by γ̃.
Consider the following fractional-error info-gap model for uncertainty in these moments:

U(h) =
{
(γ, σ2) : |γ − γ̃| ≤ |γ̃|h, |σ2 − σ̃2| ≤ σ̃2h, σ2 ≥ 0

}
, h ≥ 0 (47)

At horizon of uncertainty h, the variance and covariance σ2 and γ can each deviate fractionally from
their estimated values by as much as h, though the variance cannot be negative. The horizon of
uncertainty is unknown, so U(h) is an unbounded family of nested sets of moments.

Let s̃ = γ̃/σ̃2 denote the slope based on the observed moments, while s(γ, σ2) = γ/σ2 is the slope
if the moments were γ and σ2. The robustness of the estimate s̃ is the greatest horizon of uncertainty
in the moments up to which the deviation between s̃ and s is no greater than an acceptable value,
rc:

ĥ(s̃, rc) = max

{
h :

(
max

γ,σ2∈U(h)
|s(γ, σ2)− s̃|

)
≤ rc

}
(48)

We will consider the typical situation which is that inflation and unemployment are estimated to
be anti-correlated (so γ̃ < 0), which implies that the estimated slope of the Phillips curve is negative
(s̃ < 0). Defining ρ = −rc/s̃, one finds the robustness to be (see appendix C):

ĥ(s̃, ρ) =
ρ

2 + ρ
(49)
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Figure 7: Robustness of es-
timated slope, ĥ(s̃, ρ), vs.
critical error, ρ. Eq.(49).

Figure 8: Robustness of es-
timated slope, ĥ(se, ρ), vs.
critical error, ρ. ζ = 1
(solid), 1.05 (dash), 0.95
(dot-dash).

Figure 9: Robustness of es-
timated slope, ĥ(se, ρ), vs.
critical error, ρ. ζ = 1
(solid), 1.15 (dash), 0.85
(dot-dash).

The robustness function in eq.(49) is plotted in fig. 7. From the figure we see that the robustness
is zero when the error is zero: ĥ(s̃, 0) = 0. That is, the least-squares estimate has no immunity
against error in the estimated moments. Furthermore, the slope of the curve is positive which means
that positive robustness is obtained only by accepting the possibility of error in the estimate. That
is, the positive slope expresses the trade-off between robustness to data-uncertainty and error in
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the estimate. Moving up the robustness curve, we see that an error of no more than 20% in the
estimated slope, (that is, ρ = 0.2) is guaranteed if the moments err by no more than 9% (that is,
ĥ(s̃, 0.2) = 0.09).

5.2 Info-Gap Estimate

Can we find a more reliable estimate than the least-squares estimate s̃? Yes, but at a price. We will
study a robust-satisficing estimate of the Phillips curve slope, se, which, at positive estimation error,
is more robust to data-uncertainty than the least-squares estimate s̃.

Let se denote any estimate of the Phillips curve slope. Define the robustness of this estimate in
analogy to eq.(48):

ĥ(se, rc) = max

{
h :

(
max

γ,σ2∈U(h)
|s(γ, σ2)− se|

)
≤ rc

}
(50)

se is a useful and meaningful estimate of the slope if its robustness, ĥ(se, rc), is large at acceptable
estimation error rc. When this holds, the moments can vary substantially around the observed values
γ̃ and σ̃2, without se deviating unacceptably from the true slope s(γ, σ2).

Define ζ = se/s̃ and ρ = −rc/s̃ as before, and continue to assume that s̃ < 0. One finds the
robustness to be (see appendix C):

ĥ(se, ρ) =


ρ+ ζ − 1
ρ+ ζ + 1 if ρ2 ≥ ζ2 − 1 and ρ ≥ 1− ζ

ρ− ζ + 1
−ρ+ ζ + 1 if ρ2 ≤ ζ2 − 1 and ρ ≥ ζ − 1

(51)

ĥ(se, ρ) is zero otherwise. Eq.(51) includes eq.(49) as a special case, which arises when ζ = 1. The
point to appreciate is that, when ζ > 1, the robustness follows the lower line of eq.(51) (which has
greater slope than the robustness curve for s̃) for small ρ, and then follows the upper line of the
equation for larger ρ. This causes crossing of robustness curves as illustrated by the solid and dashed
lines in figs. 8 and 9. (The two lines in eq.(51) are equal when ρ2 = ζ2 − 1.)

Figs. 8 and 9 show robustness curves for the least-squares estimate s̃ (solid lines) and for two other
estimates se ̸= s̃. When se > s̃ (that is, ζ < 1 since se and s̃ are negative) we see that the robustness
curve for se lies below the least-squares robustness curve, so we would never choose such a value of
se. However, when se < s̃ (ζ > 1) the robustness curves for se and s̃ cross at a point which we will
denote (ρ×, ĥ×). For instance in fig. 8, for which the dashed line represents se = 1.05s̃, the crossing
occurs when ρ× = 0.25 at a robustness of ĥ× = 0.11. If we are willing to accept a fractional error in
the estimated slope which is no less than 25%, then se = 1.05s̃ is more robust to uncertainty in the
data than the least-squares estimate, s̃. The robustness premium of the robust-satisficing estimate
is not large (about 10% additional robustness over most of the range of ρ > ρ×) but nonetheless
positive.

Fig. 9 shows robustness curves for robust-satisficing estimates which deviate more from the least-
squares estimate. We see greater robustness premium for se = 1.15s̃ (about 18%), though the curves
cross at larger error (ρ× = 0.47).

In summary, we recognize three points:

• All robustness curves have positive slope, indicating the trade-off between error and reliability.
Small critical error, rc, in the estimated slope entails low robustness, ĥ(se, rc), to error in the
data. In other words, low critical error in the slope is accompanied by low confidence in limiting
the error to that value.

• The least-squares estimate of the slope, s̃, has smaller mean-squared error than any other
estimate, if the data are correct. That is, the robustness curve for s̃ sprouts off the rc-axis
further to the left than the robustness curve for any other estimate. However, s̃ is less robust
to data-error than any robust-satisficing estimate se < s̃ (ζ > 1), for values of rc in excess of
some threshold. That is, the robustness curves for s̃ and for se cross one another.
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• The choice of an estimate of the Phillips curve slope, se, depends on the acceptable level of error,
rc, and on the required level of confidence in containing the error to this value as expressed by
the robustness to uncertainty in the data, ĥ(se, rc).
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Part II

Economic Behavior

6 The Equity Premium Puzzle and Robust-Satisficing

6.1 Introduction

In part I we studied strategies for decision making in economics, looking at monetary policy in
section 3 and modelling and estimation in section 5. In the current section we turn to modelling
and explaining economic behavior. We will consider multi-period investment decisions, derive an
info-gap generalization of the Lucas asset-pricing relations, and show how this generalization points
to an explanation of the equity premium puzzle (Mehra and Prescott, 1985). We will show that, for
the 1-step investment decision, robustness is a proxy for the probability of successfully satisficing the
utility.

Investors cannot confidently maximize their future utility from an investment because of the severe
uncertainty in future asset returns. The challenge facing investors is to decide whether adequate
returns are sufficiently reliable. If not, then the resources can be invested elsewhere. We model
this behavior by assuming that investors choose an investment so as to satisfice the utility and
maximize the robustness against uncertainty in the future returns, rather than to maximize
the total discounted utility.

The crux of the matter is the treatment of uncertainty. We use an info-gap model to represent
the investor’s Knightian uncertainty about future returns: an unmeasurable and non-probabilistic
epistemic gap between known past returns and unknown future returns. The info-gap formulation
presumes that the investor knows the past returns, believes that future returns may deviate greatly
from past experience, and that reliable probabilistic models of these deviations are unavailable. An
info-gap model uses an unbounded family of nested sets to represent possible future payoffs. No
measure functions are involved.

The investor has little confidence that past returns reflect future behavior reliably. The investor’s
central question, which motivates our decision model, is: how wrong can the current estimate of future
returns be, without jeopardizing the attainment of a specified level of utility? The answer to this
question—the robustness function—generates preferences on options, without requiring probabilistic
information.

We present a multi-period two-asset implementation which provides insight into the equity pre-
mium puzzle. In section 6.2 we formulate the investment model, the info-gap model of uncertainty in
future returns, the robustness function and the robust-satisficing decision strategy. In section 6.3 we
derive asset-pricing relations which are the info-gap generalization of the Lucas asset-pricing model.
In section 6.4 we derive an expression for the equity premium. In section 6.5 we show that the
robustness is a proxy for the probability of successfully satisficing the utility. We conclude with a
discussion in section 6.6.

6.2 Dynamics, Uncertainty and Robustness

We consider discrete time, t = 0, 1, . . . , T . ct is the total consumption at time step t and u(ct) is
the utility from this consumption. We assume that u(ct) is continuous and that the marginal utility
is positive: u′(ct) > 0.

We consider two assets, one a risky stock (i = 1) and the other a risk-free bond (i = 2). The gen-
eralization to more than two assets is straightforward and would not entail any substantive alteration
of our conclusions.

xit is the quantity of asset i held between t and t+1 by a representative agent and can be either
positive or negative. The holdings at time t are xt = (x1t, x2t)

T . The holdings throughout the time
horizon are x = (x0, x1, . . . , xT−1). x is chosen by the investor.
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pit is the ex-dividend price of asset i at time t, where pt = (p1t, p2t)
T . dit is the dividend of asset

i at time t. The prices throughout the time horizon are p = (p0, p1, . . . , pT−1).
yit = pit + dit is the payoff of asset i at time t, where yt = (y1t, y2t)

T . y0 is known, y1t is risky
and uncertain while y2t is risk-free and known at t = 0 for all t ≥ 0. The uncertain payoffs are
y(1) = (y11, . . . , y1T ). y1t can be either positive or negative. (Requiring non-negative payoff would
alter our analysis only at very large robustness, which we will see is not of practical interest for
understanding the equity premium puzzle.)

The budget constraint is:

ct + pTt xt = yTt xt−1, t = 0, . . . , T (52)

The initial endowment, x−1 and y0, are known at time 0. The investment in the last step is zero:
xT = 0. Short sells are allowed but ct cannot be negative. The choice variables are x0, . . . , xT−1,
which determine the consumptions through the budget constraints.

The payoff of the risky asset, y1t, is uncertain for t > 0, and ỹ1t is the best known estimate of y1t
at time 0, where σ1t is an error of this estimate. We assume that the anticipated payoff is positive:
ỹ1t > 0. y10 is known. The investor views ỹ1t as a best but rough estimate of future payoffs, without
knowing how wrong this estimate will turn out to be. We use the unbounded fractional-error info-gap
model to represent uncertainty in the risky-asset payoffs:

Y(h, ỹ) =
{
y(1) : |y1t − ỹ1t| ≤ hσ1t, t = 1, . . . , T

}
, h ≥ 0 (53)

Y(h, ỹ) is the set of risky payoffs y1t, for t = 1, . . . , T , whose fractional deviations from the anticipated
payoffs ỹ1t are no greater than h. The fractional error, h, is unknown, so the horizon of uncertainty
is unbounded. This info-gap model is not a single interval, but rather an unbounded family of nested
payoff intervals.

The discounted utility up to time T is:

U(x, y) =
T∑
t=0

βtu(ct) (54)

The investor desires to choose the asset holdings x throughout the time horizon so as to attain
discounted utility no less than u. That is, the investor wishes to satisfice the discounted utility at
the value u:

U(x, y) ≥ u (55)

u can be thought of as a ‘reservation utility’. The investment will be pursued if the investor has
adequate confidence in achieving adequate reward.

The robustness to uncertainty in the payoffs, of holdings x with utility-aspiration u, is the
greatest horizon of uncertainty h up to which all payoffs yield at least the desired utility:

ĥ(x, u) = max

{
h :

(
min

y(1)∈Y(h,ỹ)
U(x, y)

)
≥ u

}
(56)

The set of h-values in this definition is empty if U(x, ỹ) < u, meaning that holdings x do not attain
utility u with the anticipated payoffs ỹ. In this case we define ĥ(x, u) = 0 and we say that utility
aspiration u is ‘infeasible’. Any other u is ‘feasible’.

We will be interested in robust-satisficing investments: those which satisfice the discounted utility
and maximize the robustness:

x̂(u) = argmax
x

ĥ(x, u) (57)

where the maximum on x is subject to the budget constraint with non-negative consumption.
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6.3 Asset-Pricing Relation

Consider the time horizon t = 0, 1, . . . , T . The investor has T choice vectors x0 = (x10, x20)
T , . . . ,

xT−1 = (x1,T−1, x2,T−1)
T . The uncertainties are the unknown risky payoffs y(1) = (y11, . . . , y1T )

T .
The info-gaps in these payoffs are described by Y(h, ỹ) in eq.(53) where the horizon of uncertainty h
is unknown. The risk-free payoffs (y20, . . . , y2T ) are known. Using the budget constraint in eq.(52),
the discounted utility in eq.(54) is:

U(x, y) =
T∑
t=0

βtu(y1tx1,t−1 + y2tx2,t−1 − pTt xt) (58)

x1t can be either positive or negative. Let ϕt = 1 if x1t ≥ 0 and ϕt = −1 otherwise for t ≥ 0.
Define ϕ−1 = 0. The marginal utility is positive, so the lowest utility up to horizon of uncertainty h
occurs when the risky payoffs y1t are such that y1tx1,t−1 is minimal, for t = 1, . . . , T . (Recall that
y10 is known.) The risky payoffs which minimize the utility at uncertainty h are y1t = ỹ1t−hϕt−1σ1t.
Thus the minimum in the definition of the robustness, eq.(56), is:

µ(h, x, p) = min
y(1)∈Y(h,ỹ)

U(x, y) (59)

=
T∑
t=0

βtu[ỹ1tx1,t−1 − hϕt−1σ1tx1,t−1 + y2tx2,t−1 − pTt xt︸ ︷︷ ︸
c̃t(h)

] (60)

which defines c̃t(h), the lowest anticipated consumption up to uncertainty h.
The utility aspiration u is feasible if the righthand side of eq.(60) is no less than u in the absence

of uncertainty (h = 0). Because the marginal utility is positive and hϕt−1ỹ1tx1,t−1 is also positive,
the righthand side of eq.(60) decreases strictly monotonically as h increases. Hence, for any feasible
aspiration, the robustness is the value of h at which the righthand side of eq.(60) equals u:

u = u(yT0 x−1 − pT0 x0︸ ︷︷ ︸
c0

) (61)

+
T∑
t=1

βtu

[
ỹ1tx1,t−1 − ĥ(x, u)ϕt−1σ1tx1,t−1 + y2tx2,t−1 − pTt xt︸ ︷︷ ︸

c̃t (̂h)

]

If eq.(61) holds for a continuum of investments x, then its derivatives with respect to x1t and x2t
also hold. Suppose there is a robust-satisficing investment which maximizes the robustness without
constraint (the existence of such investments is studied in Ben-Haim, 2006, section 11.5.5):

∂ĥ

∂xit
= 0, i = 1, 2; t = 0, . . . , T − 1 (62)

Differentiating eq.(61) with respect to x1t (which we assume differs from zero) and x2t, for t =
0, . . . , T − 1, and using eq.(62) yields:

du(ct)

dct
p1t = β

du(ct+1)

dct+1
(ỹ1,t+1 − ĥϕtσ1,t+1) (63)

du(ct)

dct
p2t = β

du(ct+1)

dct+1
y2,t+1 (64)

where ct = c̃t(ĥ) is the argument of the utility function in eq.(61). These relations are the info-gap
generalizations of the first-order conditions in the Lucas asset-pricing model (Blanchard and Fischer,
1989, eq.(11), p.511). The ordinary Lucas relations result when ĥ = 0.

Eq.(63) asserts that the risky-asset price p1t depends not only on the marginal rate of substitution
as in the Lucas model, but also depends on the required robustness ĥ. At low risk aversion the
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marginal utility is nearly constant, so the dominant term on the righthand of eq.(63) is 1− ĥϕtσ1,t+1.
When ϕt = +1 (e.g. the representative agent has positive risky holdings), this means that the risky-
asset price tends to decrease as the robustness which the investor requires increases. On the other
hand, for short sales of the risky asset (so ϕt = −1), the price tends to increase as the robustness
which the investor requires increases.

The basic robustness trade-off theorem asserts that robustness decreases as aspiration increases:
ĥ(x, u) decreases as u increases. This holds both for arbitrary investments x and for the robust-
satisficing investments x̂(u) in eq.(57). Furthermore, the robustness vanishes at the greatest feasible
aspiration: ĥ(x, u) = 0 if u = U(x, ỹ). (These results derive from the nested structure of info-gap
models, e.g. Y(h, ỹ) in eq.(53), and the definition of the robustness, eq.(56).) This trade-off between
robustness and utility-aspiration is illustrated schematically in fig. 10. Fig. 11 illustrates eq.(63) for
low risk aversion and ϕt = +1: the risky-asset price tends to decrease as the demanded robustness
increases. Consequently, combining figs. 10 and 11, the risky-asset price rises as investor aspirations
increase as shown in fig. 12.

The solid dots in figs. 10–12 identify corresponding points. In fig. 10 the robustness vanishes at
the maximal utility aspiration. In fig. 11 we see that zero robustness corresponds to maximal risky-
asset price, which is the analog of the Lucas asset price. pc10 represents the price when the aspiration
is maximal and the robustness is zero. In fig. 12 this maximal price corresponds to maximal utility
aspiration. Sub-maximal utility-aspiration (equivalently: positive robustness-aspiration) will force a
drop in the price of risky assets held by the representative agent (ϕt = +1).

-
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Figure 10: Trade-off of ro-
bustness against utility as-
piration.

Figure 11: Price of
risky asset vs. robustness,
eq.(63), for ϕt = +1.

Figure 12: Price of risky
asset vs. utility aspiration
for ϕt = +1.

6.4 Equity Premium

Define the anticipated or ‘best-estimate’ rates of return to the risky asset: r̃1t = ỹ1t/p1,t−1, for
t = 1, . . . , T . Likewise the known rates of return to the risk-free asset are r2t = y2t/p2,t−1. With
these definitions we can write eqs.(63) and (64), for t = 0, . . . , T − 1, as:

u′(ct) = βu′(ct+1)(r̃1,t+1 − ĥϕtσ1,t+1/pt) (65)

u′(ct) = βu′(ct+1)r2,t+1 (66)

We will use these relations to show how the info-gap robust-satisficing decision paradigm provides
insight into the equity premium puzzle. Further discussion is found in Ben-Haim (2006, section 11.5).

Subtracting eq.(66) from eq.(65) results in the info-gap generalization of a basic CAPM relation
(Blanchard and Fischer, 1989, eq.(4), p.507):

0 = βu′(ct+1)(r̃1,t+1 − r2,t+1 − ĥϕtσ1,t+1/pt), t = 0, . . . , T − 1 (67)

This relation can be re-arranged (assuming βu′(ct+1) ̸= 0) to show that the premium for the risky
asset is proportional to the required robustness:

r̃1,t+1 − r2,t+1 = ĥ ϕtσ1,t+1/pt (68)
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Investors who do not require robustness to uncertainty (ĥ = 0) also do not need a premium to attract
them to have positive holdings on risky assets (ϕt = +1). As the investor becomes more sensitive
to Knightian uncertainty in the returns (as ĥ increases), a greater premium is needed to induce
investment in both risky and risk-free assets.

We can now understand the essence of the equity premium puzzle. By assuming that investors
aspire to maximum earnings (which underlies the Lucas pricing equations) one also (unavoidably)
assumes that investors accept zero robustness (the solid dot in fig. 10). This forces the equity premium
to zero as shown in eq.(68).

Investors need not be terribly sensitive to Knightian uncertainty in order to explain the usual
equity premium. For example, if r̃1,t+1 = 1.07, r2,t+1 = 1.01 and σ1,t+1/pt = 0.2, then the robustness

in eq.(68) which explains this 6% premium is ĥ = 0.06/0.2 = 0.3, or 30% of the estimated errors σ1,t.
This is a modest robustness in light of the posited variation of risky returns. The monotonic trade-off
between robustness and aspiration for utility, illustrated in fig. 10, and the positive robustness which
explains the equity premium, indicates that investors reduce their aspirations only slightly below the
maximum. This is illustrated schematically by the open circle on the robustness curve of fig. 10.
This reduction in aspiration, in response to Knightian uncertainty in the returns, is responsible for
the observed premium for the risky asset.

We have assumed nothing about the magnitude of Arrow-Pratt risk aversion. The only assump-
tions concerning the utility function u(c) are that it is continuous and that the marginal utility is
positive. We have assumed time-separation of the discounted utility U(x, y). The time horizon T is
arbitrarily large (or small).

6.5 Robustness and the Probability of Success

In this section we consider a 1-step investment decision, and use proposition 3 to show that the
robustness is a proxy for the probability of successfully satisficing the utility. This shows that the
robust-satisficing investment strategy is at least as likely to achieve the specified goal as any other
strategy. If the economic survival of the investor depends on achieving the specified goal, then
the robust-satisficing investor will tend to survive when competing against investors who use other
strategies.

Let T = 1 in the investment problem formulated in section 6.2. The single decision to be made
is the choice of the risky and risk-free investments at time t = 0, x0 = (x10, x20)

T . The single
uncertainty is the risky payoff at time t = 1, y11. The discounted utility, eq.(58), is:

U(x0, y11) = u(y10x1,−1 + y20x2,−1 − pT0 x0) + βu(y11x10 + y21x20) (69)

where pT1 x1 = 0 since no purchase is made at t = 1. Without any loss of generality we define a
shifted utility as:

Us(x0, y11) = U(x0, y11)− 2u (70)

Now we can write the robustness of eq.(56) as:

ĥ(x0, u) = max

{
h :

(
min

y11∈Y(h,ỹ)
Us(x1, y11)

)
≥ −u

}
(71)

The robustness in eq.(71) is in the form of a lower robustness function in eq.(6). The discounted
utility Us(x0, y11) depends on a single scalar uncertainty, the uncertain payoff y11, and on the decision
vector x0. If we assume positive marginal utility, u′(c) > 0, then the discounted utility Us(x0, y11)
increases monotonically as the uncertain payoff y11 increases when x0 is fixed. The info-gap model
of eq.(53) does not depend on the decision vector. There are many choices of investment for which
the robustness, ĥ(x0, u), is finite. Thus the conditions of proposition 3 hold. Consequently, any
change in the investment which enhances the robustness also enhances (or at least does not reduce)
the probability of satisficing the utility at the required value. In short, robustness for the 1-step
investment is a proxy for the probability of success.
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6.6 Discussion

Kocherlakota (1996, p.67) concludes his discussion of the equity premium puzzle with the comment:

The universality of the equity premium tells us that, like money, the equity premium
must emerge from some primitive and elementary features of asset exchange that are
probably best captured through extremely stark models. With this in mind, we cannot
hope to find a resolution to the equity premium puzzle by continuing in our current mode
of patching the standard models of asset exchange with transactions costs here and risk
aversion there. Instead, we must seek to identify what fundamental features of goods and
asset markets lead to large risk adjusted price differences between stocks and bonds.

The info-gap robust-satisficing decision model offers the possibility of new insight. Three ideas are
prominent.

First, risk aversion is a multi-faceted phenomenon which is not captured entirely by utility-
function curvature. Especially in situations of great Knightian uncertainty, where betting is not a
particularly useful concept because probabilities are unknown, risk aversion is expressed in part by
the willingness to forego utility in exchange for robustness-to-failure. This trade-off is expressed by
the negative slope of the robustness curve in fig. 10.

Second, the info-gap robust-satisficing decision model demonstrates that the classical axiom of
utility maximization can be relaxed without losing touch with economic intuition and data. The
fundamental psychological premise—that utility is desirable—does not imply that maximal utility is
most desirable. In this section we have shown that realistic and sensible economic reasoning can be
based on, and modelled by, the concept of satisficing the utility and maximizing the robustness with
non-probabilistic info-gap models of uncertainty.

Third, we have demonstrated that 1-step investments which maximize the robustness also max-
imize the probability of successfully satisficing the utility. This means that the robust-satisficing
strategy will tend to survive in competition with any other strategy, when survival depends on
achieving specified utility outcome.
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7 Demand Theory: Satisficing and Windfalling

7.1 Introduction

The aim of this section is two-fold. One goal is to continue our study of economic behavior from the
perspective of info-gap theory, demonstrating the economic plausibility of info-gap reasoning, despite
its fundamental deviation from the neo-classical rationality of optimization. One of the most basic
economic intuitions is expressed in the relation between the price of a good and the quantity which
is demanded. The fundamental and nearly ubiquitious trade-off between price and quantity is the
starting point of much micro-economic theory. We will show that info-gap theory can re-create the
basic properties of Hicksian and Walrasian demand curves in the context of decision under severe
Knightian uncertainty.

Our second goal in this section is to introduce the second info-gap decision strategy—opportune-
windfalling—which supplements the primary strategy of robust-satisficing which we have used in
previous sections. We will see both strategies fitting nicely into an info-gap theory of demand:
opportune-windfalling generates the Walrasian while robust-satisficing generates the Hicksian de-
mand function.

This section is rather technical in order to prove that the info-gap demand functions have the
properties characteristic of neo-classical demand functions. The main findings are these:

• Classical choice problems begin with a utility function which defines complete transitive
preferences on the options (section 7.2.1). Then two decision problems are defined.

– The expenditure minimization problem (EMP) seeks a consumption bundle which mini-
mizes the expenditure and guarantees that the utility is no less than a critical value. A
consumption bundle which satisfies the EMP is a Hicksian demand function, which obeys:

∗ Price-demand trade-off: price-increases are associated with reduced demand.

∗ No excess utility: the utility requirement is exactly satisfied.

∗ Wealth compensation: as prices change, the Hicksian gives the demand which would
arise if wealth were simultaneously adjusted to keep the utility constant.

– The utility maximization problem (UMP) seeks a consumption bundle which maximizes
the utility and guarantees that the expenditure is no greater than the agent’s wealth. A
consumption bundle which satisfies the UMP is a Walrasian demand function.

The Hicksian and Walrasian demand functions are closely related. A consumption bundle which
satisfies one of these choice problems (either EMP or UMP) also satisfies the other when the
parameters (critical utility or wealth) are equivalent.

• Info-gap choice problems begin with an info-gap model for uncertainty in the reward re-
sulting from a consumption bundle (section 7.2.2). Two decision strategies are studied (sec-
tion 7.2.3):

– The robustness of a consumption bundle is the greatest horizon of uncertainty up to which
the reward resulting from this choice is no less than a critical value, which is less than the
best-estimate of the reward.

– The opportuneness of a consumption bundle is the lowest horizon of uncertainty which is
needed to enable the reward resulting from this choice to be no less than a windfall value,
which is greater than the best-estimate of the reward.

These two decision strategies generate two choice problems (section 7.2.4):

– The robust-satisficing problem (RSP) seeks a consumption bundle which minimizes the
expenditure and satisfices the reward at a specified level of robustness.

The RSP is conceptually similar to the EMP: both minimize expenditure and satisfice
outcome-related entities. The consumption bundle which solves the RSP displays the
same characteristics as the Hicksian demand function:
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∗ Price-demand trade-off: price-increases are associated with reduced demand (propo-
sition 4, section 7.3).

∗ No excess utility or robustness: the robustness requirement is exactly satisfied at the
specified critical utility (lemma 1, section 7.4).

∗ Wealth compensation: as prices change, the robust-satisficing consumption gives the
demand which would arise if wealth were simultaneously adjusted to keep the utility
constant (eq.(95), section 7.4).

– The opportune-windfalling problem (OWP) seeks a consumption bundle which maximizes
the opportuneness for windfall, while keeping the expenditure within the agent’s wealth.

The OWP is conceptually similar to the UMP: both attempt to facilitate wonderful out-
comes while constraining the expenditure to a specified budget.

The demand functions obtained by solving the RSP and the OWP are closely related. A
consumption bundle which satisfies one of these choice problems (either RSP or OWP) also
satisfies the other when the parameters are equivalent (propositions 5 and 6, section 7.4).

The most fundamental conclusion is that one can derive a theory of consumer demand which
displays the fundamental characteristics of the neo-classical theory, without requiring utility opti-
mization. The info-gap theory of demand is based on robust-satisficing and opportune-windfalling
strategies which are motivated by the severe uncertainties which face the consumer.

Our discussion is summarized in section 7.5. All proofs appear in appendix D.

7.2 Consumer Choice Problems

In section 7.2.1 we briefly review the utility maximization and expenditure minimization problems
from which demand theory arises, and discuss the intuitions which underlie these strategies of choice.
In section 7.2.2 we briefly define info-gap models in the format which will be needed here. Section 7.2.3
is devoted to a discussion of the info-gap robustness and opportuneness functions. We employ these
decision functions in section 7.2.4 to formulate two info-gap decision problems—robust satisficing
and opportune windfalling—and explain their analogy to the traditional choice problems.

Notation: if x ∈ ℜL, then x > 0 means xi > 0 for all i = 1, . . . , L. Also, x ≥ 0 means xi ≥ 0 for
all i = 1, . . . , L.

7.2.1 Classical Choice Problems

Our discussion follows Mas-Colell, Whinston and Green (1995). A preference relation ≽ on X ⊂ ℜL

is rational if the following properties hold:
(i) Completeness: For all x, y ∈ X, x ≽ y or y ≽ x or both.
(ii) Transitivity: For all x, y, z ∈ X, if x ≽ y and y ≽ z, then x ≽ z.
A scalar function u(x) is a utility function representing the preference relation ≽ if, for all

x, y ∈ X, x ≽ y if and only if u(x) ≥ u(y).
Given prices p > 0 and utility u > u(0), the expenditure minimization problem (EMP) is

to choose a consumption bundle x for which:

min
x≥0

pTx subject to u(x) ≥ u (72)

Given prices p > 0 and wealth w > 0, the utility maximization problem (UMP) is to choose
x such that:

max
x≥0

u(x) subject to pTx ≤ w (73)

A vector x which solves the EMP is a Hicksian demand function, H(p, u), while a solution of the
UMP is a Walrasian demand function, x(p, w).
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A central result in demand theory states that, if u(x) is a continuous utility function representing
a locally non-satiated preference relation, then if x∗ is an optimal choice for the UMP with wealth
w > 0, then it is optimal for the EMP when the required utility is u(x∗). Likewise, if x∗ is an
optimal choice for the EMP when the required utility is u > u(0), then it is optimal for the UMP
with wealth w = pTx∗ (Mas-Colell et al, Proposition 3.E.1, p.58). In otherwords, these two choice
problems coalesce for appropriate choices of the parameters.

Nonetheless, different intuitions motivate these two selections of a consumption vector x. This is
important for our study since it is the intuitions which we wish to preserve in the info-gap context.

The UMP is an ambitious program of maximizing satisfaction subject to a budget constraint.
The UMP “squeezes the orange” as much as possible. And in fact any solution x∗ satisfies Walras’
law, pTx∗ = w, meaning that the budget is exploited to the limit (Mas-Colell et al, Proposition 3.D.2,
pp.51–52).

The EMP, on the other hand, is motivated by (possibly cautious) satisficing. The decision maker
chooses a (possibly modest) level of utility u and pinches the budget as much as possible to just
achieve this level of utility. And in fact any solution x∗ does exactly that: u(x∗) = u; there is no
excess utility (Mas-Colell et al, Proposition 3.E.3, p.61).

7.2.2 Info-Gap Models of Uncertainty

Events are represented as vectors or vector functions f . Knowledge-deficiency is expressed at two
levels by info-gap models. For fixed h the set F(h, f̃) represents a degree of variability of f around
the centerpoint f̃ . The greater the value of h, the greater the range of possible variation, so h is
called the horizon of uncertainty and expresses the information gap between what is known (f̃ and
the structure of the sets) and what needs to be known for an ideal solution (the exact value of f).
The value of h is usually unknown, which constitutes the second level of imperfection of knowledge:
the horizon of uncertainty is unbounded.

We will use a somewhat more structured form of info-gap model than used in previous sections.
Let ℜ+ denote the non-negative real numbers and let Ω be a Banach space in which the uncertain

quantities f are defined. An info-gap model F(h, f̃) is a map from ℜ+ × Ω into the power set of Ω.
Info-gap models obey four axioms, only the first two of which we have used previously in this paper.
Nesting: F(h, f̃) ⊆ F(h′, f̃) if h ≤ h′. Contraction: F(0, 0) is the singleton set {0}. Translation:
F(h, f̃) is obtained by shifting F(h, 0) from the origin to f̃ : F(h, f̃) = F(h, 0)+ f̃ . Linear expansion:
info-gap models centered at the origin expand linearly: F(h′, 0) = h′

h F(h, 0) for all h, h′ > 0. Nesting
is the most characteristic of the info-gap axioms. It expresses the intuition that possibilities expand
as the info-gap grows. For more discussion of these axioms see Ben-Haim (1999).

7.2.3 Robustness and Opportuneness

We now present two info-gap decision problems and explain their conceptual proximity to the intu-
itions underlying the classical EMP and UMP.

The decision maker will choose a commodity vector x ∈ X ⊆ ℜL. The outcome of this choice
is influenced by an unknown vector (or vector function) f ∈ Ω whose range of possible variation is
represented by an info-gap model F(h, f̃), h ≥ 0, in a Banach space Ω.

We will define two real-valued reward functions defined on (x,A) where x ∈ X and A ⊂ Ω. The
lower reward function R∗(x,A) is monotonically decreasing on the power set of Ω, at fixed choice
x:

A ⊂ B implies R∗(x,A) ≥ R∗(x,B) (74)

The upper reward function R∗(x,A) is monotonically increasing on the power set of Ω, at fixed
choice x:

A ⊂ B implies R∗(x,A) ≤ R∗(x,B) (75)

The monotonicity of these reward functions does not relate to the commodity vector x, or to
the decision maker’s preferences regarding these choices. The reward functions are monotonic in the
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space Ω of unknown auxiliary events f , and expresses the impact of this ambient variation on the
available outcomes of a choice. Properties (74) and (75) do not establish preference relations on x.

The most common realizations of the lower and upper reward functions is in terms of least and
greatest available rewards as f varies within a set A ⊂ Ω. Let r(x, f) be the reward actually realized
when the choice is x ∈ X and the unknown quantity takes the value f ∈ Ω. Common choices of
lower and upper reward functions are:

R∗(x,A) = min
f∈A

r(x, f) (76)

R∗(x,A) = max
f∈A

r(x, f) (77)

Thus R∗(x,A) is the least available reward, while R∗(x,A) is the greatest available reward, in the
uncertain environment A. In this realization, R∗ and R∗ still have not determined a preference
relation on x, both because the set A is undetermined and because the lower and upper rewards may
behave differently.

More specifically, we will subsequently choose the set A as a set F(h, f̃) in an info-gap family of
nested sets. Then, in eqs.(76) and (77), R∗[x,F(h, f̃)] is the least accessible reward up to info-gap
h, while R∗[x,F(h, f̃)] is the greatest accessible reward up to h.

Like the classical utility function u(x), the reward functionsR∗(x,A) andR∗(x,A) are real-valued
and represent desirable reward. The decision maker prefers more rather than less. Unlike u(x),
however, neither R∗(x,A) nor R∗(x,A) need be continuous or convex, (though we will sometimes
assume continuity), nor do they derive from preference relations. Moreover, the decision maker
can’t know the values of R∗(x,A) and R∗(x,A) which will be realized in practice because the set
A is unknown. Finally, while R∗ and R∗ entail knowledge-deficiency, they are not probabilistic but
instead depend on an info-gap model.

We will now use R∗(x,A) and R∗(x,A) to define two decision functions (Ben-Haim, 2006) which
generate preferences on values of x. These preferences are not unique, nor are the same preferences
necessarily derived from each of the two decision functions. These preferences will vary with aspiration
level, price, wealth and possibly other exogenous factors. These two decision functions are motivated
by intuitions which are similar to those underlying the classical decision problems, EMP and UMP.

Let rc be a value of reward which the decision maker strives to achieve; more reward would be
better, but less than rc would be unacceptable. The decision maker wishes to satisfice at reward
level rc. The decision maker might choose or contemplate rc-values in the same way that minimal
utility values u are chosen in the EMP of eq.(72). The robustness of choice x is the greatest level
of knowledge-deficiency at which reward no less than rc is guaranteed:

ĥ(x, rc) = max
{
h : R∗[x,F(h, f̃)] ≥ rc

}
(78)

ĥ(x, rc) is a robust satisficing decision function.
Let rw be a large value of reward (much greater than rc) which the decision maker would be

delighted to achieve; lower reward would be acceptable, but reward as large as rw is a windfall success.
The decision maker might evaluate or contemplate rw-values much as values of the maximum utility
obtained in the UMP of eq.(73) is evaluated. The opportuneness inherent in choice x is the least
level of knowledge-deficiency at which windfall can occur:

β̂(x, rw) = min
{
h : R∗[x,F(h, f̃)] ≥ rw

}
(79)

β̂(x, rw) is an opportune windfalling decision function.
ĥ(x, rc) and β̂(x, rw) are immunity functions. ĥ(x, rc) is the immunity against failure (reward

less than rc). When ĥ(x, rc) is large, failure can occur only at great ambient uncertainty; the
decision maker is not vulnerable to pernicious uncertainty. Similarly, β̂(x, rw) is the immunity against
windfall (reward no less than rw). When β̂(x, rw) is small, windfall can occur even under mundane
circumstances; the decision maker is not immune to propitious uncertainty.
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These considerations lead to preference rankings on the choice vector x. While “bigger is better”
for robustness ĥ(x, rc), “big is bad” for opportuneness β̂(x, rw). The preferences induced by the
robust-satisficing strategy are:

x ≽r x
′ if ĥ(x, rc) ≥ ĥ(x′, rc) (80)

Likewise, the preferences induced by the opportune-windfalling strategy are:

x ≽o x′ if β̂(x, rw) ≤ β̂(x′, rw) (81)

We note that neither ≽r nor ≽o is necessarily single-valued for any pair of choices x and x′:
the preferences may change with rc and rw, respectively. Moreover, ≽r and ≽o may rank the
same pair of options differently. The preference relations ≽r and ≽o , either alone or together, do
not satisfy the rationality conditions of completeness and transitivity. They do not establish unique
preferences for all pairs of available choices, and they hence do not entail transitivity of preference.

7.2.4 Info-Gap Choice Problems

We now formulate two info-gap choice problems and explain their conceptual similarity to the classical
EMP and UMP.

Given prices p > 0, critical reward rc, and demanded robustness ĥd, the robust satisficing
problem (RSP) is to choose a commodity vector x which satisfies:

min
x∈X

pTx subject to ĥ(x, rc) ≥ ĥd (82)

Given prices p > 0, windfall reward rw, and wealth w > 0, the opportune windfalling problem
(OWP) is to choose x such that:

min
x∈X

β̂(x, rw) subject to pTx ≤ w (83)

We now explain the intuitive similarity between robust satisficing (RSP) and expenditure mini-
mization (EMP), and between opportune windfalling (OWP) and utility maximization (UMP).

RSP and EMP: The structural parallel between the EMP in eq.(72) and the RSP is obvious. In
both, the expenditure pTx is minimized subject to a satisficing constraint on a preference-generating
function: u(x) or ĥ(x, rc). Furthermore, the RSP also satisfices the reward by means of the inequality
on the lower reward function R∗ in eq.(78). The critical value of utility u in the EMP or the critical
reward rc and demanded robustness ĥd in the RSP can be chosen small or large at the decision
maker’s discretion. In both cases the decision maker is adopting a cautious or protective stance while
attempting to guarantee a specified minimal level of satisfaction.

The fundamental difference between the RSP and the EMP is that the latter is based on a
complete, transitive preference relation while the former is not. The EMP presumes substantially
greater knowledge by the decision maker about the options and their import. The robustness function
ĥ(x, rc) generates a preference relation contingent upon a choice of the critical reward, rc. Preferences
may change as the decision maker’s aspiration for reward, rc, changes. The robustness function is
not directly a utility, but an auxiliary evaluation of feasibility or justifiability of option x with regard
to reward-aspiration rc. Knowing a consumer’s robustness function tells us less about the utility to
that individual of option x, than knowing a utility function u(x).

OWP and UMP: The UMP in eq.(73) is structurally and conceptually similar to the OWP
once we recognize that a minimum β̂ optimizes the opportuneness for sweeping windfall success.
This ‘windfalling’ is the info-gap analog of the classical search for maximum utility. Moreover, both
maxu(x) and min β̂ are subject to the same budget constraint, pTx ≤ w. Furthermore, we explained
in discussing eq.(73) that the UMP is an ambitious strategy, attempting to achieve the greatest
utility facilitated by the available budget. There is no margin of safety in the UMP; large utility
is its own protection. Similarly, the windfalling strategy aspires to facilitate reward as large as rw,

29



expressed by the inequality on the upper reward function R∗ in eq.(79). In the info-gap context there
may be no maximal reward even given a finite budget because of the endless potential for propitious
uncertainty. What the windfalling decision maker is doing is optimizing the possibility of exploiting
this potential, while attempting to facilitate great reward rw far in excess of the critical reward rc
needed for survival.

The primary distinction between the OWP and the UMP, as in the RSP and EMP case, is that
the opportuneness function β̂(x, rw) is not itself a utility function, but rather an auxiliary assessment
of the propitiousness of option x regarding windfall aspiration rw.

Viewing the four choice-problems together, the primary difference is the symmetry in EMP/UMP
which is broken in RSP/OWP by ĥ(x, rc) and β̂(x, rw). Implications of this, together with some
substantive differences between robustness and opportuneness, will arise in propositions 5 and 6.

7.3 Price-Demand Antagonism

In demand theory, H(p, u) is a Hicksian demand function if it is a solution of the EMP. That is,
pTH(p, u) is minimal subject to u(x) ≥ u. If u(x) is a continuous utility function representing a locally
non-satiated preference relation, then H(p, u) obeys the compensated demand law (Mas-Colell et al,
Proposition 3.E.4, p.62):

(p− p′)T [H(p, u)−H(p′, u)] ≤ 0 (84)

Let us define x̂r(p, ĥd, rc) as a consumer choice x which solves the RSP. That is, pT x̂r(p, ĥd, rc)
is minimal subject to the robustness constraint ĥ(x, rc) ≥ ĥd. x̂r(p, ĥd, rc) is the robust satisficing
demand. In the theory we are developing here, x̂r(p, ĥd, rc) is the analog of H(p, u). The analog of
the classical Hicksian demand law is:

Proposition 4 Given: F(h, f̃) is an info-gap model in the Banach space Ω; ĥ(x, rc) is a robustness
function for F(h, f̃) based on a lower reward function R∗(x,A) which is monotonically decreasing on
the sets in Ω; x̂r(p, ĥd, rc) is a robust satisficing demand function for ĥ(x, rc).

Then: for any price vectors p and p′ we have:

(p− p′)T [x̂r(p, ĥd, rc)− x̂r(p
′, ĥd, rc)] ≤ 0 (85)

That is, like the Hicksian demand H(p, u), price p and robust satisficing demand x̂r vary antag-
onistically. Moreover, subsequent results will demonstrate that, like H(p, u), the robust satisficing
demand x̂r(p, ĥd, rc) is wealth-compensated.

Let us define x̂o(p, w, rw) as a consumer choice x which solves the OWP. That is, β̂(x̂o, rw) is
a minimal value of the opportuneness function subject to the budget constraint pT x̂o ≤ w. Since
the OWP is the info-gap analog of the UMP, we see that x̂o(p, w, rw) is the analog of the Walrasian
demand function.

7.4 Wealth-Compensated Demand

The commodity vector is x ∈ X ⊆ ℜL, and the info-gap model of uncertainty F(h, f̃), h ≥ 0, is
defined in a Banach space Ω.

Definition 1 The function robustness ĥ(x, r) is continuous at x if, for each ε > 0 there is a δ > 0
such that: ∣∣∣ĥ(x, r)− ĥ(x′, r)

∣∣∣ < ε whenever ∥x− x′∥ < δ (86)

Continuity of the opportuneness function is similarly defined.
Relations (74) and (75) define the lower and upper reward functions as monotonic in the uncer-

tainty sets. The following property of strict monotonicity is slightly different.
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Definition 2 The lower reward function R∗(x,A) is strictly monotonic in h for info-gap model
F(h, f̃) if, for all x ∈ X and all f̃ ∈ Ω:

h < h′ implies R∗[x,F(h, f̃)] > R∗[x,F(h′, f̃)] (87)

Definition 3 The upper reward function R∗(x,A) is strictly monotonic in h for info-gap model
F(h, f̃) if, for all x ∈ X and all f̃ ∈ Ω:

h < h′ implies R∗[x,F(h, f̃)] < R∗[x,F(h′, f̃)] (88)

Definition 4 The lower reward function R∗(x,A) is continuous in h at f̃ for an info-gap model
F(h, f̃) if, for each x ∈ X and for each ε > 0 there is a δ > 0 such that:∣∣∣R∗(x,F(h, f̃)]−R∗(x,F(h′, f̃)]

∣∣∣ < ε whenever |h− h′| < δ (89)

Continuity of an upper reward function is similarly defined.

Definition 5 Lower and upper reward functions R∗(x,A) and R∗(x,A) are similarly ordered if,
for all x, x′ ∈ X and for all A ⊂ Ω:

R∗(x,A) < R∗(x
′, A) if and only if R∗(x,A) < R∗(x′, A) (90)

An immunity function, ĥ(x, rc) or β̂(x, rw), is ‘non-satiated’ if an arbitrarily small change in x
can improve the immunity. Since “bigger is better” for robustness ĥ(x, rc), while “big is bad” for
opportuneness β̂(x, rw), the definitions of non-satiation for these immunity functions are different
but symmetrical.

Definition 6 The opportuneness function is non-satiated at x ∈ X if, for every ε > 0, there is an
x′ ∈ X such that

∥x− x′∥ < ε and β̂(x′, rw) < β̂(x, rw) (91)

Definition 7 The robustness function is non-satiated at x ∈ X if, for every ε > 0, there is an
x′ ∈ X such that

∥x− x′∥ < ε and ĥ(x′, rw) > ĥ(x, rw) (92)

Lemma 1 Given: R∗(x,A) is a lower reward function which is continuous in h at all f̃ for an
info-gap model F(h, f̃); ĥ(x, rc) is the robustness function defined for this reward function; ĥ(x, rc)
is continuous at all x.

If x solves the RSP of eq.(82) then:

ĥ(x, rc) = ĥd and R∗[x,F(ĥ(x, rc), f̃)] = rc (93)

The RSP entails satisficing both the robustness (the inequality in eq.(82)) and the reward (the
inequality in eq.(78)). Lemma 1 asserts that there is no excess robustness or reward at a solution of
the RSP.

Lemma 2 Given: R∗(x,A) is an upper reward function which is continuous in h at all f̃ for
an info-gap model F(h, f̃); β̂(x, rw) is the opportuneness function defined for this reward function;
β̂(x, rw) is continuous at all x.

If x solves the OWP of eq.(83) and if β̂(x, rw) is non-satiated at this x, then:

pTx = w and R∗[x,F(β̂(x, rw), f̃)] = rw (94)
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Note that the opportuneness function is satiated if β̂(x, rw) = 0. Hence (94) need not hold if the
minimal opportuneness function vanishes.

Lemma 2 states that if x solves the OWP then x also obeys Walras’ law of complete utilization of
wealth. Furthermore, the lemma asserts that there is no excess reward in the solution of the OWP:
the inequality in the definition of the opportuneness function, eq.(79), is an equality at x.

Proposition 5 Given: R∗(x,A) and R∗(x,A) are similarly ordered lower and upper reward func-
tions, respectively; R∗(x,A) is continuous in h at all f̃ for an info-gap model F(h, f̃); R∗(x,A) is
strictly monotonic in h; ĥ(x, rc) and β̂(x, rw) are robustness and opportuneness functions, respec-
tively, defined for these reward functions; ĥ(x, rc) and β̂(x, rw) are continuous at all x.

If x̂r solves the RSP of eq.(82), then x̂r solves the OWP of eq.(83) with w = pT x̂r and rw =
R∗[x̂r,F(ĥd, f̃)]. Moreover, β̂(x̂r, rw) = ĥd = ĥ(x̂r, rc).

Proposition 6 Given: R∗(x,A) and R∗(x,A) are similarly ordered lower and upper reward func-
tions, respectively; R∗(x,A) is continuous in h at all f̃ for an info-gap model F(h, f̃); R∗(x,A) is
strictly monotonic in h; ĥ(x, rc) and β̂(x, rw) are robustness and opportuneness functions, respec-
tively, defined for these reward functions; ĥ(x, rc) and β̂(x, rw) are continuous at all x and ĥ(x, rc)
is non-satiated at all x.

If x̂o solves the OWP of eq.(83) and if β̂(x̂o, rw) is non-satiated at x̂o, then x̂o solves the
RSP of eq.(82) with ĥd = β̂(x̂o, rw) and rc = R∗[x̂o,F(β̂(x̂o, rw), f̃)]. Moreover, pT x̂o = w and
ĥ(x̂o, rc) = ĥd.

We can summarize our results as follows. Let wrsp denote the minimum expenditure which is

obtained as the solution of the RSP, eq.(82): wrsp(p, rc, ĥd) = pT x̂r(p, rc, ĥd) since x̂r(p, rc, ĥd) is the

solution of the RSP. Proposition 5 relates x̂r(p, rc, ĥd) to x̂o(p, rw, w) (the solution of the OWP) as
follows:

x̂r(p, rc, ĥd) = x̂o[p,R∗[x̂r,F(ĥd, f̃)]︸ ︷︷ ︸
rw

, wrsp(p, rc, ĥd)] (95)

This relation explains the sense in which x̂r is a wealth-compensated demand. By definition,
the demand x̂r(p, rc, ĥd) is evaluated with fixed critical reward rc and fixed demanded robustness
ĥd. Moreover, eq.(95) shows that, as prices change, x̂r(p, rc, ĥd) gives the consumption when the
wealth wrsp(p, rc, ĥd), is adjusted to keep both rc and ĥd constant. This parallels the sense in which
the Hicksian demand function is a compensated demand (Mas-Colell et al, p.62). This further
strengthens the parallel between x̂r and the Hicksian demand, since we already know that they both
obey price-demand trade-off (proposition 4).

Let αowp(rw, w) denote the minimum obtained as the solution of the OWP: the lowest info-gap

which facilitates windfall reward rw given wealth w. Thus αowp(rw, w) = β̂(x̂o, rw). Proposition 6
relates the solutions of the OWP and the RSP as:

x̂o(rw, w) = x̂r[R∗[x̂o,F(αowp, f̃)]︸ ︷︷ ︸
rc

, αowp(rw, w)] (96)

Propositions 5 and 6, together with lemmas 1 and 2, also assert that:

ĥ(x̂r,R∗[x̂r,F(ĥd, f̃)]︸ ︷︷ ︸
rc

) = β̂(x̂r,R∗[x̂r,F(ĥd, f̃)]︸ ︷︷ ︸
rw

) (97)

ĥ(x̂o,R∗[x̂o,F(αowp, f̃)]︸ ︷︷ ︸
rc

) = β̂(x̂o,R∗[x̂o,F(αowp, f̃)]︸ ︷︷ ︸
rw

) (98)

Each of these relations establishes rc and rw values at which the robustness and opportuneness
functions obtain the same values when evaluated at the same level of demand.

Consider for instance eq.(97). When the consumer chooses the RSP-optimal demand x̂r, then
critical reward no less than rc is guaranteed if the info-gap is no greater than ĥ(x̂r, rc). Eq.(97)
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asserts that this is the lowest level of uncertainty at which reward as large as rw is possible. In
other words, eq.(97) identifies a situation in which survival (rc) is guaranteed while windfall (rw) is
possible. A similar situation is identified by eq.(98).

Furthermore, it can be shown that ĥ(x, rc) decreases as rc increases, while β̂(x, rw) increases as
rw increases [8]. Thus eq.(97) specifies the greatest feasible windfall rw at which critical reward rc is
robustly guaranteed, when demand x̂r is chosen. Any greater value of rw cannot be attained without
increasing the info-gap above the value of robustness ĥ(x̂r, rc). Conversely, rc is the lowest value of
critical survival-reward which can be robustly guaranteed while also enabling windfall as large as rw,
when choosing x̂r. Any larger value of rc would entail lower robustness and hence a lower feasible
value of windfall reward rw. Similar conclusions apply to eq.(98) when demand function x̂o is chosen.

The lower and upper reward functions are very commonly ‘naturally ordered’ (definition 8). We
will explain that this property implies:

rc ≤ rw (99)

for each of the rc-rw pairs in eqs.(97) and (98).

Definition 8 Lower and upper reward functions R∗(x,A) and R∗(x,A) are naturally ordered if,
for all x ∈ X and for all f ∈ Ω:

R∗(x, {f}) ≤ R∗(x, {f}) (100)

We have not assumed natural ordering of our reward functions, but it does in fact hold for the reward
functions of eqs.(76) and (77). Natural ordering together with the monotonicity properties, eqs.(74)
and (75), imply relation (99) for the rc and rw values in eqs.(97) and (98).

7.5 Summary and Conclusion

We have developed a theory of consumer demand which preserves the phenomenological features of
classical demand, without the assumptions of rational-choice theory: complete, transitive preferences.
We have explained that the info-gap choice problems of robust satisficing (RSP) and opportune
windfalling (OWP) correspond to the traditional problems of expenditure minimization (EMP) and
utility maximization (UMP), respectively. We have demonstrated that the consumer choice resulting
from the RSP, x̂r, is the analog of the Hicksian demand function, while the solution of the OWP,
x̂o, is analogous to the Walrasian demand. Specifically, x̂r is a wealth-compensated demand function
which obeys Walras’ law and the law of price-demand trade-off.

The workhorses of info-gap analysis are the immunity functions: the robustness function ĥ(x, rc)
and the opportuneness function β̂(x, rw). These functions are derived from an info-gap model,
F(h, f̃), h ≥ 0, which is an unbounded family of nested sets of events, and which expresses the
unbounded domain of pernicious as well as propitious possibilities entailed by the decision maker’s
incomplete knowledge. The immunities also depend upon the lower and upper reward functions,
R∗(x,A) and R∗(x,A), which describe anticipated reward accruing from choice x accompanied by
uncertain environment A.

The robustness function ĥ(x, rc) assesses the degree of robustness of choice x to pernicious ambient
uncertainty, when the decision maker aspires to satisfice at the reward level rc. The opportuneness
function β̂(x, rw) expresses the immunity of option x to the possible attainment of a great windfall
reward rw. Both immunity functions depend upon aspirations, rc and rw, which are not speci-
fied by the theory nor necessarily chosen a priori by the consumer. Once the aspiration levels rc
and rw are chosen, then each immunity function generates a complete transitive preference ranking
of the options. However, these preference rankings—based on robustness or opportuneness—need
not be consistent with one another, nor need they remain constant as aspirations change. Since
wealth, price and other contextual factors will influence consumer aspiration, info-gap theory does
not presume prior knowledge of preference, nor can it predict consumer choice. Even in this context,
however, we have seen that the basic results of demand theory remain intact: complementarity of
the robust-satisficing and the opportune-windfalling choice problems; Hicksian- and Walrasian-like
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demand functions derived from these consumer-choice problems; wealth-compensated price-demand
trade-off.
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Part III

Conclusion

8 Positivism, F-twist, and Robust-Satisficing

The central issues of this paper— how to formulate and evaluate policy and how to model economic
behavior—are methodological, and touch the hoary debate over positivism in economics. Without
wishing to enter the fray (positive economics: right or wrong?), I will use the clash between Friedman
(1953) and Samuelson (1963) to illuminate the methodological distinctiveness of info-gap robust-
satisficing.

In a nutshell, the argument which we develop in this section is this:

• Friedman is right that good theories depend on axioms which capture an essential truth, while
usually violating a messier reality.6

• Samuelson is right that factual inaccuracy of a theory detracts from its validity in prediction
and policy formulation.7

• Both Samuelson and Friedman agree that economic science, like natural science, improves over
time and progresses towards truth.8

• However, there is an inherent indeterminism in economic systems which precludes the shared
belief of Samuelson and Friedman.9

• Hence optimization—of models or of policy outcomes—is fatuous (or serendipitious).10 Satis-
ficing can, sometimes, be done reliably.11

8.1 Friedman and Samuelson

Friedman was undoubtedly right (though rhetorical and infuriating, as usual) when he wrote (Fried-
man, 1953, p.14):

Truly important and significant hypotheses will be found to have ‘assumptions’ that
are wildly inaccurate descriptive representations of reality, and, in general, the more
significant the theory, the more unrealistic the assumptions (in this sense). The reason
is simple. A hypothesis is important if it ‘explains’ much by little, that is, if it abstracts
the common and crucial elements from the mass of complex and detailed circumstances
surrounding the phenomena to be explained and permits valid predictions on the basis of
them alone.

A first-rate illustration is Galileo’s “wildly inaccurate” Law of Inertia: a body moves at constant
velocity unless acted upon by a force. This is the most blatantly counter-intuitive proposition in
the history of science: no one has ever witnessed an instance of such perpetual motion. Aristotle’s
hypothesis is far more realistic: a body loses speed unless acted upon by a force. And yet Galileo’s
hypothesis is outstripped by few others for theoretical fruitfulness and predictive power. As Friedman
would explain, Galileo’s Law strips away the nagging nuisance of dissipative forces and cuts to the
essence of material dynamics.

Samuelson summarized Friedman’s position with what he referred to as the ‘F-Twist’ (Samuelson,
1963, p.232):

6“Your bait of falsehood takes this carp of truth;” Shakespeare.
7“Thanks to the negation sign, there are as many truths as falsehoods; we just can’t always be sure which are

which.” Quine, (1995).
8“The movement of ideas toward truth may be glacial but, like a glacier, it is hard to stop.” Galbraith (1986).
9“For fallibilism is the doctrine that our knowledge is never absolute but always swims, as it were, in a continuum

of uncertainty and of indeterminacy.”, Peirce (1897, 1955).
10“Optimization works in theory but risk management is better in practice. There is no scientific way to compute an

optimal path for monetary policy.” Greenspan (2005).
11Hence the need for “a little stodginess at the central bank.” (Blinder, 1998).
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A theory is vindicated if (some of) its consequences are empirically valid to a useful degree
of approximation; the (empirical) unrealism of the theory ‘itself,’ or of its ‘assumptions,’
is quite irrelevant to its validity and worth.

Samuelson (1963, p.233) is undoubtedly correct in focussing on the basic F-Twist, which

is fundamentally wrong in thinking that unrealism in the sense of factual inaccuracy even
to a tolerable degree of approximation is anything but a demerit for a theory or hypothesis
(or set of hypotheses).

Samuelson presents logical and epistemological arguments. I suggest further support for Samuelson’s
position. We value successful tests of a theory because they add warrant to the belief that the theory
will predict accurately even when no data are around. That is, when a theory passes a severe test
of its predictions, we gain support for the inductive hypothesis that the theory will reliably predict
in untested circumstances as well. The significance of successful tests of a theory derives from the
fact—established by Hume—that empirical evidence can never verify the inductive hypothesis that
what worked yesterday will work tomorrow, or that what worked in one circumstance will work in
another. Predictive success strengthens our faith in the inductive hypothesis (Haack, 1993).

Thus Friedman is right that fruitful theories may rest of idealizations which are empirically
violated, while Samuelson is right that disparity between axiom and observation detracts from the
value of the theory.

8.2 Shackle-Popper Indeterminism

Having now established myself firmly in both Samuelson’s and Friedman’s camps, I will not attempt
to resolve their conflict. Rather, I will demonstrate the methodological distinctiveness of info-gap
robust-satisficing by disputing a point upon which they would both agree. Both men concur that
economics is epistemologically identical to physical science. Other scholars, for instance Koopmans,
would also agree (Koopmans, 1957 pp.134–135). Friedman is explicit (Friedman, 1953, pp.4–5).
Samuelson is implicit, by applying the criterion of logical consistency which is the pride of the
physicists (Samuelson, 1963, pp.233–234). Physicists yearn for universal unifying theories, and a
collection of logically conflicting sub-theories (relativity, statistical mechanics, quantum theory, etc.)
is viewed with discomfort.

In contrast, a number of scholars, such as Habermas (1970), have emphasized the non-nomological
nature of social science. I will not review the rich literature, but only focus on what I will refer to
as Shackle-Popper indeterminism. This idea, developed separately and in different ways by Shackle
(1972) and Popper (1957, 1982), will lay the groundwork for the methodology of info-gap robust-
satisficing.12

The basic idea is that the behavior of intelligent learning systems displays an element of un-
structured and unpredictable indeterminism. By ‘intelligence’ I mean: behavior is influenced by
knowledge. This is surely characteristic of humans individually and of society at large. By ‘learning’
I mean a process of discovery: finding out today what was unknown yesterday. One economically
important example of learning is what Keynes referred to as hearing ‘the news’. Finally, indetermin-
ism arises as follows: because tomorrow’s discovery is by definition unknown today, and tomorrow’s
behavior will be influenced by newly discovered knowledge, tomorrow’s behavior is not predictable
today, at least not in its entirety. Given the richness of future discovery, (or its corollary, the richness
of our current ignorance), the indeterminism of future behavior is broad, deep and unstructured.

The most important domain of indeterminism, for our purposes, is mathematical modelling of
social systems, in particular, economic ones. Complexity and dimensionality are severe challenges
in themselves. However, here we are dealing with the limited ability of laws, derived from past
behavior, to describe future behavior. Intelligent learning behavior, as we have defined it, entails an

12Shackle-Popper indeterminism is related to Knightian uncertainty (Knight, 1921). See also Ben-Haim (2006,
chap. 12) and Ben-Haim (2007, p.157).
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element of innovation which seems to explain the painful experience of social modellers. In this sense,
Shackle-Popper indeterminism accounts for the partially non-nomological nature of social systems.

8.3 Methodological Implications

The point is not that models can never describe social or economic activity, or that there is nothing
that can be called a law of behavior. Rather, models of intelligent learning systems must focus on
two categories of uncertainties, which I will refer to as ‘measurement’ and ‘epistemic’ uncertainty.

Measurement uncertainty is the usual kind: noise in data, bias in samples, and so on. Quite
often, though not always (Fox et al, 2007), measurement uncertainty can be modelled and managed
with statistical tools.

Epistemic uncertainty refers to the gaps and errors in our understanding of the processes being
modelled, arising in part from Shackle-Popper indeterminism. For instance, complex non-linearities
are approximated with linear models, high-dimensional systems are truncated, relevant interactions
are ignored or not recognized. We usually know that our understanding is deficient, and we may
even be ignoring implicit knowledge for pragmatic reasons. But more profoundly, the Shackle-Popper
indeterminism implies that some element of error is inevitable in describing tomorrow’s behavior with
today’s models, and that the nature and degree of this disparity is inherently unforeseeable.

For example, the info-gap models introduced in section 3.1 represent epistemic uncertainty about
the behavior of the economy. The coefficients of the model are uncertain not only due to measurement
error, but due to the basic inability to entirely capture future behavior with past observation. The
info-gap model of uncertainty is non-probabilistic precisely because the errors are epistemic, not
statistical.

One methodological implication of Shackle-Popper indeterminism is that model error must be
taken very seriously. The traditional positivistic optimism that our models are improving and even
converging on the truth, is untenable. Positivism was enlisted to explain the wonderful success of the
science-based technology which burst on the scene in the 19th century. The strategy of scientists such
as Kelvin and Raleigh was to learn nature’s laws, and then to apply them to technological enterprise.
This works because Peirce was right that the study of nature does converge, asymptotically, on
something that can reasonably be called the truth. As much as social scientists may wish to emulate
this strategy, it will founder on the shoals of Shackle-Popper indeterminism.

One way of taking model-error seriously is to use the robust-satisficing strategy which we defined
in section 3.2. For instance, ĥ+(v, yc) in eq.(5) is the robustness of control vector v, to errors in
the economic model, when the target is satisficed to level yc. This robustness function evaluates
the policy worthiness of control v, given performance-aspiration yc, in light of epistemic uncertainty
about the economic system.

Another methodological implication, dealt with elsewhere (Ben-Haim, 2005a), touches on the
process of up-dating a mathematical model based on measurements. The two horns of uncertainty—
measurement and epistemic uncertainty—generate an irrevocable trade-off. A model with high fi-
delity to data will have low immunity to structural error in the model. Either type of uncertainty
can be ameliorated only at the expense of exacerbating the other. The methodological response
is again to use robust-satisficing. A model with maximal fidelity to data will have zero immunity
to structural info-gaps, so it is best to satisfice the fidelity at a sub-optimal level (rather than to
optimize the fidelity), in order to garner some robustness to epistemic uncertainty.

37



9 What Next?

We have only barely begun to apply info-gap theory to economic decisions and models. We outline
here a few additional directions of study.

When considering decision strategies the following topics, among others, are important.
Forecasting. Forecasts which are based on sound statistical fidelity to historical data are liable

to fail due to fundamental structural change in the future.13 Shackle-Popper indeterminism miti-
gates against optimizing the fidelity of a forecasting model to historical data. The robust-satisficing
strategy, together with a proxy theorem, can lead to more reliable predictions of future outcomes.
Some work in this direction has been done (Ben-Haim, 2008) but much remains to be explored and
developed.

Financial risk management. Value-at-risk and related techniques depend on knowledge of prob-
ability distributions. However, the extreme tails of these distributions are often poorly known (Hen-
dricks, 1996). The uncertainty is not only statistical, resulting from limited historical data on extreme
events. The uncertainty is also epistemic: future extreme events may result from mechanisms which
have no historical manifestations. Once again we face Knightian uncertainty and Shackle-Popper
indeterminism. Once again, robust-satisficing can lead to more reliable risk management strategies
(Ben-Haim, 2005b).

Large-scale monetary policy formulation. To date, applications of info-gap theory to monetary
policy have been based on small stylized economic models (Akram, Ben-Haim and Eitrheim, 2006;
Ben-Haim, Akram and Eitrheim, 2007). The application of the info-gap robust-satisficing strategy
to larger econometric models entails many challenges and opportunities.

The range of economic behavior which can be explored using info-gap theory is enormous,
including the following topics.

Economic paradoxes. We explored an info-gap explanation of the equity premium puzzle in
section 6 (see also Ben-Haim, 2006, section 11.5). This can be extended in various ways, including
empirical study. An initial study of the home bias paradox (Ben-Haim and Jeske, 2003) can also be
extended. Other conundrums can be studied, such as Deaton’s paradox, the purchasing power parity
puzzle, and others (Obstfeld and Rogoff, 1996).

Competitive markets with info-gaps. Preliminary work shows that much of the classical marginal
analysis of competitive equilibrium is reproduced—in somewhat altered form—in an economic model
in which firms and households robust-satisfice rather than maximize their profit or utility (Ben-Haim,
2002). This can be extended.

What are rational expectations? When an agent faces uncertainty, and wishes to achieve speci-
fied goals (like economic survival), it is not rational to base decisions on the best known model of
the economy. Such an approach would minimize the agent’s robustness to error and, when a proxy
theorem applies, would also minimize the probability of achieving those goals. In order to be suc-
cessful, the uncertain agent should use a robust-satisficing strategy to formulate beliefs about how
the economy operates.

Learning and anticipation. Likewise, an agent who learns about the unfolding ambient reality
should not try to optimize the learning algorithm in the sense of minimizing the learning time or
maximizing the amount which is learned. Such strategies are based on prior knowledge about the

13This has been noted by several authors. In econometrics, “the [data] generating process is unknown and evo-
lutionary” (Hendry, 1995, p.xxix). Furthermore, in “the forecasting context . . . the degree of data congruence or
non-congruence of a model is neither necessary nor sufficient for forecasting success or failure.” (Clements and Hendry,
1999, p.xxiv). These authors develop auto-regressive forecasting models which use difference data, and non-causal
variables, showing that such models can out-perform historically calibrated and causally-relevant models.

In macro-economic modelling

there is genuine uncertainty about how good a model is, even within the sample. Moreover, since the
economy is evolving, we can take it for granted that the data generation process will change in the forecast
period, causing any model of it to become mis-specified over that period, and this is eventually the main
problem in economic forecasting. (Bardsen et al, 2005, p.246)
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system which is being learned, and they are maximally vulnerable to info-gaps in that knowledge.
(That there are serious errors in the agent’s knowledge is plausible; otherwise, what is there to learn?)
Robust-satisficing strategies for learning are more reliable. These are strategies which satisfice the
relevant entities (e.g. learning time) and maximize the robustness to errors in the knowledge which
underlies the strategy.
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A Proofs for Section 3

Proof of proposition 1. The proof for ĥ+ derives directly from the fact that the robustness curve,
ĥ+(v, yc) vs. yc, is a straight line with slope 1/θ(v) and intercept ỹ(v), as illustrated in fig. 1. Similar
reasoning applies for ĥ− and ĥ, as illustrated in figs. 2 and 3.

Proof of proposition 2. Consider first the upper robustness. The standardization condition
allows us to express the variation of Ps+ in eq.(21) as follows:

∂Ps+

∂vi
=

∂Z

∂ζ

∣∣∣∣̂
h+

∂ĥ+
∂vi

(101)

= z(ĥ+)
∂ĥ+
∂vi

(102)

The pdf is non-negative, so eq.(102) is equivalent to eq.(33).
Now consider the lower robustness. The standardization condition allows us to express the vari-

ation of Ps− in eq.(25) as follows:

∂Ps−
∂vi

=
∂Z

∂ζ

∣∣∣∣
−ĥ−

∂ĥ−
∂vi

(103)

= z(−ĥ−)
∂ĥ−
∂vi

(104)

The pdf is non-negative, so eq.(104) is equivalent to eq.(33).

B Proofs for Section 4

Proof of proposition 3. We will prove the proposition for the upper robustness, ĥ+(v, yc) and sup-
posing that y(x, v) is monotonically increasing in x. The proofs if y(x, v) is monotonically decreasing
in x, and for the lower robustness, are similar and will not be elaborated.

Since ĥ+(v, yc) > ĥ+(v
′, yc) we conclude that ĥ+(v, yc) is strictly positive. Since the robustness

ĥ+(v, yc) is finite, there exists an x for which y(x, v) = yc. (If y(x, v) < yc for all x then the robustness
would be infinite). Recall that y(x, v) increases monotonically with x. Denote the greatest x which
satisfies the inequality y(x, v) ≤ yc as x+(v), defined as the maximum x satisfying:

y[x+(v), v] = yc (105)

x+(v) must be finite since ĥ+(v, yc) is finite.
Define x+(v

′) as in eq.(105) if it exists. If y(x, v′) > yc for all x then x+(v
′) for eq.(105) does not

exist. However, in this case Λ+(v
′) is an empty set and Ps+(v

′) = 0 and the proposition is true. We
need continue only with the case that x+(v

′) exists.
From the monotonicity of y(x, v), we see that Λ+ for the control v is the one-sided interval:

Λ+(v) = (−∞, x+(v)] (106)

Now consider the control v′, whose upper robustness is finite. The info-gap model, U(h) in eq.(37),
when h equals ĥ+(v

′, yc), is a closed interval. Since y(x, v′) increases monotonically in x we see that
the upper bound of this interval must equal x+(v

′), which we denote:

x+(v
′) = UBU

[
ĥ+(v

′, yc)
]

(107)

where we note that the upper bound in fact belongs to the interval.
Consider the two control vectors, v and v′, which, by supposition, satisfy:

ĥ×(v
′, yc) < ĥ×(v, yc) (108)
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The nesting axiom implies that:

U
[
ĥ+(v

′, yc)
]
⊆ U

[
ĥ+(v, yc)

]
(109)

This relation, with eq.(107), implies:

x+(v
′) ∈ U

[
ĥ+(v, yc)

]
(110)

This relation, with eq.(107) applied to v, implies:

x+(v
′) ≤ x+(v) (111)

which, with eq.(106), implies:
Λ+(v

′) ⊆ Λ+(v) (112)

Hence:
Ps+(v

′) ≤ Ps+(v) (113)

which concludes the proof for the upper robustness, assuming that y is monotonically increasing in
x.

C Derivation for Section 5

We will derive the robustness function in eq.(51), defined in eq.(50), which includes eqs.(48) and (49)
as a special case. We will consider the case that γ̃ < 0.

Let µ(h) denote the inner maximum in eq.(50). Note that µ(h) = ∞ if h ≥ 1 because s = γ/σ2

and σ2 can vanish for h ≥ 1. Thus the robustness is never greater than one, and we need to evaluate
µ(h) only for h < 1.

This inner maximum at uncertainty h occurs when s is either maximal or minimal. That is, the
inner maximum occurs either when γ is maximal (that is, negative but close to zero) and σ2 is also
maximal, or when γ is minimal (very negative) and σ2 is also minimal. That is:

µ(h) = max

[(
max

γ,σ2∈U(h)
s

)
− se, se −

(
min

γ,σ2∈U(h)
s

)]
(114)

= max

[
γ̃ + |γ̃|h
(1 + h)σ̃2 − se, se −

γ̃ − |γ̃|h
(1− h)σ̃2

]
(115)

= max

[
1− h

1 + h
s̃− se︸ ︷︷ ︸

µ+(h)

, se −
1 + h

1− h
s̃︸ ︷︷ ︸

µ−(h)

]
(116)

which defines the functions µ−(h) and µ+(h), one of which may be negative.
Define the function ĥ+(se, rc) as the solution for h of µ+(h) = rc. That is, ĥ+(se, rc) is the inverse

of µ+(h). One readily shows that ĥ+(se, rc) equals the lower line in eq.(51).
Likewise, define the function ĥ−(se, rc) as the solution for h of µ−(h) = rc. That is, ĥ−(se, rc) is

the inverse of µ−(h). One readily shows that ĥ−(se, rc) equals the upper line in eq.(51).
µ(h) is the inverse of ĥ(se, rc). That is, ĥ(se, rc) is the solution for h of µ(h) = rc. Since µ(h)

equals the larger of µ+(h) and µ−(h), we see that ĥ(se, rc) is the smaller of ĥ+(se, rc) and ĥ−(se, rc),
as illustrated in fig. 13. One readily shows that ĥ−(se, rc) ≤ ĥ+(se, rc) if and only if ρ2 ≥ ζ2 − 1.

Finally, we must select the non-negative parts of the curves, which results in the conditions
ρ ≥ 1− ζ and ρ ≥ ζ − 1. This completes the derivation.
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Figure 13: Illustration for appendix C.

D Proofs for Section 7

Proof of proposition 4. x̂r(p, rc, ĥd) minimizes the expenditure with price vector p, so for any p′:

pT x̂r(p, rc, ĥd) ≤ pT x̂r(p
′, rc, ĥd) (117)

Likewise, x̂r(p
′, rc, ĥd) minimizes the expenditure with price vector p′, so for any p:

p′
T
x̂r(p, rc, ĥd) ≥ p′

T
x̂r(p

′, rc, ĥd) (118)

Subtracting (118) from (117) and re-arranging leads to the desired result, eq.(85).
Proof of lemma 1. (1) From the definition of the robustness function in eq.(78) and the

continuity of R∗ in h, and since x solves the RSP, we require that:

R∗[x,F(ĥ(x, rc), f̃)] ≥ rc (119)

Suppose that:
R∗[x,F(ĥ(x, rc), f̃)] > rc (120)

By the info-gap axioms of nesting and linear expansion, we have: h < h′ implies that F(h, f̃) ⊂
F(h′, f̃). Since R∗(x,A) is monotonically decreasing in A (eq.(74)) and continuous in h, (120)
implies that there is an h > ĥ(x, rc) such that:

R∗[x,F(h, f̃)] > rc (121)

which contradicts the definition of ĥ(x, rc). Hence

R∗[x,F(ĥ(x, rc), f̃)] = rc (122)

(2) Suppose that ĥ(x, rc) > ĥd. Based on this supposition, and since ĥ(x, rc) is continuous in x,
there is an x′ ∈ X such that pTx′ < pTx and ĥ(x′, rc) > ĥd. This contradicts the supposition of the
lemma that x solves the RSP. Hence there is no such x′. Consequently ĥ(x, rc) = ĥd.

Proof of lemma 2. (1) From the definition of the opportuneness function in eq.(79) and the
continuity of R∗ in h, and since x solves the OWP, we require that:

R∗[x,F(β̂(x, rw), f̃)] ≥ rw (123)

Suppose that:
R∗[x,F(β̂(x, rw), f̃)] > rw (124)

By the info-gap axioms of nesting and linear expansion, we have: h < h′ implies that F(h, f̃) ⊂
F(h′, f̃). Since R∗(x,A) is monotonically increasing in A (eq.(75)) and continuous in h, (124) implies
that there is an h < β̂(x, rw) such that:

R∗[x,F(h, f̃)] > rw (125)
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which contradicts the definition of β̂(x, rw). Hence

R∗[x,F(β̂(x, rw), f̃)] = rw (126)

(2) Suppose that pTx < w. Based on this supposition, and since β̂(x, rw) is non-satiated at x,
there is an x′ ∈ X such that β̂(x′, rw) < β̂(x, rw) and pTx′ < w. This contradicts the supposition of
the lemma that x solves the OWP. Hence there is no such x′. Consequently pTx = w.

Proof of Proposition 5. ĥd = ĥ(x̂r, rc) by lemma 1.
Suppose, contrary to the assertion of the proposition, that there is an x′′ ∈ X which solves the

OWP with the specified w and rw, so that pTx′′ ≤ w, and for which:

β̂(x′′, rw) < β̂(x̂r, rw) (127)

which means that x̂r does not solve the OWP. We will refer to this contradictory supposition as CS.
Given CS and the continuity of the opportuneness function β̂(x, rw), we see that there is an x′

such that:
β̂(x′, rw) < β̂(x̂r, rw) and pTx′ < w (128)

That is, the opportuneness is better at x′ than x̂r, and the expenditure with x′ is strictly less than
w.

By definition of the opportuneness function:

β̂(x′, rw) = min

h : R∗[x′,F(h, f̃)] ≥ R∗[x̂r,F(ĥd, f̃)]︸ ︷︷ ︸
rw

 (129)

and:

β̂(x̂r, rw) = min

h : R∗[x̂r,F(h, f̃)] ≥ R∗[x̂r,F(ĥd, f̃)]︸ ︷︷ ︸
rw

 = ĥd (130)

Equality to ĥd in eq.(130) arises as follows. It is evident from (130) that β̂(x̂r, rw) ≤ ĥd. From the
nesting and linear expansion axioms of info-gap models we see that h < ĥd implies that F(h, f̃) ⊂
F(ĥd, f̃). Strict monotonicity of R∗(x,A) in h implies R∗[x̂r,F(h, f̃)] < R∗[x̂r,F(ĥd, f̃)] for h < ĥd.
Hence β̂(x̂r, rw) cannot be less than ĥd. Therefore β̂(x̂r, rw) = ĥd.

Relations (128)–(130), together with monotonicity of R∗(x,A) in h, imply:

R∗[x′,F(ĥd, f̃)] > R∗[x̂r,F(ĥd, f̃)] (131)

By similar ordering of R∗ and R∗ this implies:

R∗[x
′,F(ĥd, f̃)] > R∗[x̂r,F(ĥd, f̃)] (132)

By definition of the robustness function:

ĥ(x′, rc) = max

h : R∗[x
′,F(h, f̃)] ≥ R∗[x̂r,F(ĥd, f̃)]︸ ︷︷ ︸

rc

 (133)

The identity to rc results from lemma 1.
Lemma 1 also implies that ĥ(x̂r, rc) = ĥd. Relations (132) and (133), together with monotonicity

of R∗(x,A) in the uncertainty sets A, relation (74), and continuity in h, imply:

ĥ(x′, rc) > ĥd = ĥ(x̂r, rc) (134)

Since pTx′ < w (eq.(128)), while (by definition of w) pT x̂r = w, we see from (134) that CS implies
that x̂r is not a solution of the RSP. This contradicts the condition of the proposition, so CS is false.
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Hence there is no x′′ satisfying relation (127). We conclude that x̂r solves the OWP: it minimizes
the opportuneness function and pT x̂r = w.

Proof of Proposition 6. Lemma 2 implies pT x̂o = w.
Suppose, contrary to the assertion of the proposition, that there is an x′′ ∈ X which solves the

RSP with the specified rc and ĥd, so that ĥ(x′′, rc) ≥ ĥd and for which:

pTx′′ < pT x̂o (135)

which means that x̂o does not solve the RSP. We will refer to this contradictory supposition as CS.
Given CS and the non-satiation of the robustness function ĥ(x, rc), we see that there is an x′

such that:
pTx′ < pT x̂o and ĥ(x′, rc) > ĥd (136)

That is, the expenditure is lower at x′ than x̂o, and the robustness with x′ is strictly greater than
ĥd.

By definition of the robustness function:

ĥ(x′, rc) = max

h : R∗[x
′,F(h, f̃)] ≥ R∗[x̂o,F(ĥd, f̃)]︸ ︷︷ ︸

rc

 (137)

and

ĥ(x̂o, rc) = max

h : R∗[x̂o,F(h, f̃)] ≥ R∗[x̂o,F(ĥd, f̃)]︸ ︷︷ ︸
rc

 = ĥd (138)

Equality to ĥd in eq.(138) arises as follows. It is evident from (138) that ĥ(x̂o, rc) ≥ ĥd. From the
nesting and linear expansion axioms of info-gap models we see that ĥd < h implies that F(ĥd, f̃) ⊂
F(h, f̃). Strict monotonicity of R∗(x,A) in h implies R∗[x̂o,F(h, f̃)] < R∗[x̂o,F(ĥd, f̃)] for ĥd < h.
Hence ĥ(x̂o, rc) cannot be greater than ĥd. Therefore ĥ(x̂o, rc) = ĥd.

Relations (136)–(138), together with the monotonicity of R∗(x,A) in h, imply:

R∗[x
′,F(ĥd, f̃)] > R∗[x̂o,F(ĥd, f̃)] (139)

By similar ordering of R∗ and R∗:

R∗[x′,F(ĥd, f̃)] > R∗[x̂o,F(ĥd, f̃)] (140)

By definition of the opportuneness function:

β̂(x′, rw) = min

h : R∗[x′,F(h, f̃)] ≥ R∗[x̂o,F(ĥd, f̃)]︸ ︷︷ ︸
rw

 (141)

The identity of rw in (141) results from lemma 2.
By definition, ĥd = β̂(x̂o, rw). Relations (140) and (141), together with the monotonity of

R∗(x,A) in the sets A, relation (75), and continuity in h, imply:

β̂(x′, rw) < ĥd = β̂(x̂o, rw) (142)

Since pTx′ < pT x̂o (from eq.(136)), and since pT x̂o = w, (142) contradicts the supposition of the
proposition that x̂o solves the OWP. Hence there cannot be such an x′ and the CS is false. Hence
x̂o solves the RSP.
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