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Abstract Averages are measured for diagnosis, prediction, or surveillance. However,
averages reveal nothing about fluctuations, and extreme values may be more significant
than the average. The analyst can choose decision variables: path length and other param-
eters. This paper explores the choice of decision variables to achieve robustness against
pernicious uncertainty when interpreting an average, in face of uncertain fluctuations of
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the averaged variable. We also explore the choice of decision variables to achieve oppor-
tuneness from propitious uncertainty. Trade offs and “trade-ons” between robust and op-
portune decision variables are identified. Three examples are developed: enforcing speed
limits; inferring levels of economic activity; statistical hypothesis testing. We use concepts
of robustness and opportuneness from info-gap decision theory. We also explore the rela-
tion between the probability of success and the non-probabilistic robustness to uncertainty,
demonstrating conditions where robustness is a proxy for probability.

Keywords averages, extremes, info-gaps, uncertainty, robustness, opportuneness, speed
limits, economic activity, statistical inference.

1 Introduction

If you travel on a highway at 75 km/h for 59 minutes and 150 km/h for 1 minute, then your
average speed is 76.25 km/h; a moderate average, but not safe driving. A drinking binge
just one day a month would not look like excessive alcohol intake when averaged over
time [8], but it’s hardly healthy behavior. Some faces are more attractive than others, but
it is found that the average values of facial parameters are widely considered the best [21].
The average mechanical stress along a beam is not a good measure of safety because local
beam imperfections or local loading may cause dangerous local stress concentrations [6].
A country’s annual gross domestic product is an average over regions which may differ
greatly. For instance, the volume index of GDP/capita in 20061 for Australia, Japan, Re-
public of Korea and Russia are: 125.1, 112.7, 89.3, and 41.3. However, the ranges between
small regions of each country, from minimum to maximum GDP/capita as percent of na-
tional GDP/capita in 2006, for AU, JN, RoK and RU are: (80.1, 126.9), (65.5, 181.5), (63.3,
217.5), (15.6, 676.5) [20]. Two students with the same 4-year average grade may display
very different trends or fluctuations in time and among disciplines.

Deviations from the mean are not necessarily pernicious. Extreme deviations from the
average may be propitious opportunities for better-than-anticipated outcomes. Quick stock
market profits depend on detecting drops and peaks in prices. Impetuous drivers can be
caught only by detecting their transient episodes of speeding. Curing binge drinkers may
be most effective on the day after their binge.

In this paper we will discuss the use of averages for regulating highway speed, for infer-
ring levels of economic activity, and for making statistical inference. In all cases, however,
it is the extreme values that concern the policy maker or planner, and these extremes are
deeply uncertain.

The theory of probability is widely used and can be highly useful. Its usefulness derives
partly from its underlying assumptions, especially the assumption that relevant probabil-
ity distributions are reliably known. The present paper explores uncertainty in the shapes

1OECD=100 in year 2000 at 2000 price levels and PPPs.
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of functions. The probabilistic representation of functional uncertainty is difficult for two
reasons. First, it is mathematically difficult to represent probabilities in a function space,
and this requires various assumptions about the processes involved. Second, we study
processes about which knowledge is sparse, so extreme values are elusive and functional
uncertainty abounds. Extreme value theory does not require knowledge of probability
distributions. However, extreme value theory assumes that the random variables are inde-
pendent and identically distributed, among other assumptions [10, p.261]. We will consider
situations where this assumption is unjustified. We will employ info-gap decision theory,
as applied elsewhere to related issues [6]. Info-gap theory is a non-probabilistic method for
modeling and managing uncertainty [2].

Average values disclose nothing about deviations from the average. However, by treat-
ing those deviations as uncertain, and by evaluating the robustness to that uncertainty
using limited additional information, the policy maker or strategic planner can assess and
augment the usefulness of an average for indicating or reducing extreme deviations. That
is, acknowledging the deep uncertainty of deviations, and managing that uncertainty by
evaluating the robustness to uncertainty, supports interpretations of the average in terms
of extreme deviations.

The present paper employs the info-gap formulations of robustness and opportune-
ness that have been applied in many situations for protection against pernicious surprise
or for exploitation of propitious surprise. One innovation of this paper is that the robust-
ness and opportuneness functions are used for inference about extreme deviations from
the observed average. We are not protecting against or exploiting surprise as in many prior
applications of info-gap theory. Instead, we are using the info-gap robustness and oppor-
tuneness functions to disclose various properties of extreme deviations from the average.
These functions are formulated in section 2.

We will consider three examples in depth. The first example, in section 3, entails setting
highway speed limits, where the implicit goal is to constrain speeding that is far in excess
of the legal limit. The second example, in section 4, involves inference about low levels of
economic activity based only on observed average levels. The third example, in section 5,
involves statistical hypothesis testing. Section 6 explores the use of the non-probabilistic
robustness function as a proxy for the probability of satisfying specified conditions. When
this proxy property holds, one can enhance or maximize the probability of success by en-
hancing or maximizing the robustness without any probabilistic information about the pro-
cesses involved. Section 7 is a brief conclusion. Some generic properties that are common
to all three examples are developed and discussed elsewhere [6].

2 Info-Gap Robustness and Opportuneness in Response to
Deep Uncertainty

Many applications, including those in sections 3–5, depend upon functions that vary over
space or time. Information about these functions is available, but there remains deep un-
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certainty about their shapes. This section formulations the info-gap functions of robustness
and opportuneness whose use is demonstrated in later sections.

Humanity has always faced deficient or erroneous information. However, the system-
atic study of uncertainty began only in the early 17th century, leading to concepts of prob-
ability [13]; statistical inference emerged only in the 19th century [22, 24]. Diverse models
of uncertainty emerged in the 20th century. Lukaczewicz developed 3-valued logic in 1917
[16], Wald formulated a modern version of min-max in 1945 [25], and in 1965 Zadeh in-
troduced his work on fuzzy logic [27]. Many other theories, including P-boxes [12], lower
previsions [18, 26], Dempster-Shafer theory [10, 23], generalized information theory [14]
and info-gap decision theory [2, 4] have continued to sprout up.

These theories for modeling and managing uncertainty differ substantially from one
another, and we won’t elaborate their differences. However, these theories are all axiomat-
ically distinct from the theory of probability whose axiomatization was established by Kol-
mogorov [15]. For example, probability density functions must be normalized to unity, but
this does not hold for fuzzy belief functions. Similarly, the probabilistic representation of
uncertainty employs real-valued scalar functions, while P-boxes and info-gap models of
uncertainty are set-valued functions.

The choice of an uncertainty model should match the type of knowledge and ignorance
that must be represented and managed. In the present paper we confront extremely sparse
information, and for this purpose minimalistic info-gap models of uncertainty are suitable.

Our basic notation is as follows.
x is an independent scalar variable denoting time or spatial location. In the spatial context

we will assume that space is 1-dimensional, for instance position on a road or on a path
through 2- or 3-dimensional space. x varies on the interval [0, D].

v(x) is a substantive scalar function denoting, for example, speed or mechanical load at
location x, or quantity of consumption per unit time at time x, or GDP per unit distance at
location x, etc.

The performance requirement is expressed by a constraint on the substantive function
v(x). That is, the planner or analyst requires that:

F[v(x)] ≤ vc (1)

where F[·] is a known scalar-valued function. The value vc is a critical requirement, fixed
by a regulator, or by a client, or by other means. It is acceptable for the function F[v(x)] to
be less than the critical value, but exceeding vc is prohibited. The robustness function, to
be defined shortly, establishes a degree of confidence in satisfying the critical requirement
in eq.(1). The function F is called the performance function. It may entail integration over the
domain [0, D], or some other operation such as maximization over the domain as in sec-
tion 3.2. Alternatively, F(·) may operate only on part of the domain, or it may be evaluated
at one or more specific values of x such as the midpoint or end of the domain.

vc is the largest acceptable value of F[v(x)], but smaller values are acceptable and even
desirable. In some situations the planner or analyst aspires to achieve a wonderfully small
value, vw, which is less than vc. In this case the performance aspiration is to attempt to
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satisfy eq.(1) with vw instead of vc, but not to require this condition. The opportuneness
function, to be defined soon, assesses the feasibility of enabling, though not necessarily
guaranteeing, the windfall value vw.

Finally, the substantive function, v(x), is uncertain, as expressed by an info-gap model of
uncertainty [2]. An info-gap model of uncertainty is an unbounded family of nested sets,
U (h), of the uncertain entity, v(x). An info-gap model expresses the uncertain knowledge
about the substantive function, but no probability distributions are involved; the info-gap
model is non-probabilistic as discussed in detail elsewhere [1].

All info-gap models obey the nesting axiom that asserts that the sets become more in-
clusive as the value of h increases:

h < h′ =⇒ U (h) ⊆ U (h′) (2)

This axiom endows h with its meaning as an horizon of uncertainty, and its value is un-
known and unbounded though non-negative.

In many applications the info-gap model also obeys the contraction axiom that asserts
that there is a known substantive function ṽ(x) as the only possibility in the absence of
uncertainty:

U (0) = {ṽ(x)} (3)

The info-gap models of sections 3 to 5, eqs.(6), (20) and (39), all obey the nesting axiom,
but only the latter two info-gap models also obey contraction. The info-gap model of eq.(6)
does not obey contraction because of the one-sided asymmetrical constraint on the sub-
stantive functions.

For simplicity we will assume that the sets of the info-gap model are closed sets.
The robustness to uncertainty is the greatest horizon of uncertainty, h, up to which the

performance requirement in eq.(1) is guaranteed to be satisfied for all realizations of the
uncertain substantive function in the uncertainty set U (h). The formal definition of the
robustness is:

ĥ(vc) = max
{

h :
(

max
v∈U (h)

F[v(x)]
)
≤ vc

}
(4)

The opportuneness from uncertainty is the least horizon of uncertainty, h, at which the
performance aspiration — not requirement — in eq.(1), with vw rather than vc, is satisfied
for at least one realization of the uncertain substantive function in the uncertainty set U (h).
The formal definition of the opportuneness is:

β̂(vc) = min
{

h :
(

min
v∈U (h)

F[v(x)]
)
≤ vw

}
(5)

3 Example: Imposing Speed Limits

The regulation of car traffic on roadways draws the attention of a vast proportion of human-
ity on a daily basis, and has also been the focus of scholarly research. For instance, Delle
Monache et al. [9] study the optimal control of road traffic by employing variable speed
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limits, noting (and managing) the substantial challenges in solving the flow patterns. They
compare alternative strategies for traffic control, assuming that drivers obey speed limits.
In this example we will relax that assumption in a much simpler situation that avoids the
flow-dynamic complexities. We focus on the choice of the speed limit and of the size of the
road section in which average speeds are monitored.

The speed of a car as a function of position along the road is denoted v(x). The car
passes a sensor at position x = 0 and the distance to the next sensor is D. Let v0 denote
the speed when passing the first sensor. This may in fact be an actual measurement on
a specific car that is then tracked. The next sensor will detect the passing of the car and
determine the time elapsed, T, since the car passed the previous sensor. The average speed
of the car between the sensors is D/T. A traffic fine will be imposed if the average speed
exceeds the legal speed limit.

Considerations of road safety indicate that cars should not exceed a safe speed vs at
any time between the sensors. Recognizing that drivers will exceed speed limits, the legal
speed limit is set at a lower value, v`. That is, the traffic law requires v(x) ≤ v` for all
values of x. The disparity between vs and v` can be viewed as part of a strategic interaction
between drivers and regulators.

The problem confronting the regulator is that the average speed between sensors does
not reflect local variations of speed. The questions we ask relate to robustness against this
uncertainty. Is the determination of speed compliance robust to uncertainty in the speed
profile between sensors? How does this robustness vary with the distance, D, between sen-
sors and with the legal speed limit v`? What is the robustness at the safe speed, vs, and how
does this change as the disparity between v` and vs increases? What are the implications
for choice of D and v`, for given vs, to enhance robustness to uncertain variations in speed?

3.1 Info-Gap Model of Uncertainty

We will assume positive car velocities at all positions along the road. Thus position, x,
increases monotonically with time, t, so we can express velocity as a function of time, v(t).
This is important because we will need to consider acceleration. The car passes the first
sensor at time t = 0 and reaches the second sensor at time T.

The regulator imposes the speed limit v` but does not know the extent to which drivers
will exceed this value. Furthermore, the regulator estimates the typical potential for accel-
eration of cars at the positive value ã [17]. Cars typically display zero acceleration, but their
actual acceleration, v̇(t), relative to the estimate is uncertain. The following info-gap model
quantifies these uncertainties non-probabilistically and also posits positive velocities:

U (h) =
{

v(t) : v(t) > 0,
v(t)− v`

v`
≤ h,

∣∣∣∣ v̇(t)ã

∣∣∣∣ ≤ h
}

, h ≥ 0 (6)

U (h) is the set of all positive speed profiles, v(t), whose fractional deviation above the
speed limit, v`, is no greater than the horizon of uncertainty, h, and whose absolute ac-
celeration, relative to the estimate ã, is no greater than h. The value of h is unknown and
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unbounded, so the info-gap model is not a single set, but rather an unbounded family of
nested sets of possible speed profiles. This means that there is no known worst case. Fur-
thermore, the info-gap model is a non-probabilistic quantification of uncertainty.

The conceptual tool that one employs in assessing extreme responses should match the
available knowledge and its lacunae, as well as the goals that one seeks to attain. The info-
gap model of eq.(6) specifies what we know, and what we don’t know, about the speed
profile function v(t). It is important to stress that our very limited knowledge is entirely
non-probabilistic. For instance, we have no basis for supposing that velocities at distinct
times are statistically independent and identically distributed. In fact, it is quite plausible
to suppose that neither of these properties holds, either for any specific driver during a
journey, or between different drivers. We are concerned with extreme values that the speed
profile may obtain, or exceed, but the fundamental probabilistic assumptions that underlie
extreme value distributions — independent and identically distributed random variables
[19, p.261] — are not warranted given the available knowledge. Extreme value distribu-
tions would be useful, but they are not accessible given the state of our knowledge. This
motivates the info-gap analysis of robustness to uncertainty.

3.2 Robustness Against Uncertainty

The robustness to uncertainty in the speed profile is the greatest horizon of uncertainty,
h, up to which all speed profiles in the uncertainty set U (h) never exceed a safe speed,
vs, throughout the travel between the sensors. Let T denote the time of travel between
the sensors, whose value has yet to be determined. The definition of the robustness as a
function of the safe speed, vs, is [2, 4]:

ĥ(vs) = max
{

h :
(

max
v∈U (h)

max
t∈[0,T]

v(t)
)
≤ vs

}
(7)

Let m(h, t) denote the maximum speed at horizon of uncertainty h and at time t. That
is, m(h, t) is the inner double maximum in the definition of the robustness function, eq.(7).

The distance between sensors, D, is fixed. The car passes the 1st sensor at time t = 0
and the time of arrival at the 2nd sensor, T, depends on the car’s speed profile. If the car
accelerates greatly its speed rises rapidly and its arrival at the 2nd sensor occurs quickly,
allowing little time for acceleration. This may suggest that its final speed is not maximal,
from among all possible speed profiles, if the acceleration is maximal. Nonetheless we
can readily understand that the maximum speed occurs at the 2nd sensor and is obtained
when the car accelerates maximally, even though this minimizes the transit time. The proof
appears in appendix A.

If the car’s velocity exceeds the speed limit at the first sensor then a fine would be
imposed at that time and the car would no longer interest the regulator. Thus let us suppose
that the velocity when passing the 1st sensor, v0, is known to the regulator and does not
exceed the speed limit:

v0 ≤ v` (8)

7



This alters the info-gap model of eq.(6) by adding the further constraint on its elements that
v(0) = v0.

Assuming that the constants v`, v0 and ã are positive, the maximum speed at time t in
the definition of the robustness is the lesser of the two maxima obtained from the velocity
and acceleration constraints of the info-gap model:

m(h, t) = min {(1 + h)v`, v0 + ãht} (9)

From eq.(8), m(h, t) equals the second term in eq.(9) at short times, and switches to the first
term at the time, denoted ts(h), at which the two velocities are equal:

(1 + h)v` = v0 + ãht =⇒ ts(h) =
(1 + h)v` − v0

ãh
(10)

Thus:

m(h, t) =

{
v0 + ãht if t ≤ ts(h)

(1 + h)v` else
(11)

The distance between the sensors is known and equals D, so the time of arrival at the
2nd sensor, T, is the solution of:

D =
∫ T

0
m(h, t)dt (12)

Suppose that the 2nd sensor is reached no later than ts(h):

T ≤ ts(h) (13)

In this case, the arrival time is the solution for T of:

D =
∫ T

0
(v0 + ãht)dt = v0T +

1
2

ãhT2 (14)

Solving for T yields two roots, only one of which is positive:

Ta(h) =
−v0 +

√
v2

0 + 2ãhD

ãh
(15)

where the subscript ‘a’ denotes that this is the arrival time if v0 + ãht (velocity from maxi-
mum acceleration), is the minimum in eq.(9). Recall that this solution for T depends on the
supposition in eq.(13).

If the supposition in eq.(13) does not hold then the time of arrival at the 2nd sensor, T,
is greater than ts(h). However, in this case we don’t need to know the value of T because
the final velocity does not depend on it, as stated in the 2nd line of eq.(11).

Thus, from eq.(11), the inner double-maximum in the definition of the robustness, eq.(7),
is:

m(h, T) =

{
v0 + ãhTa(h) if Ta(h) ≤ ts(h)

(1 + h)v` else
(16)
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Figure 1: Robustness vs
safe speed for D = 5 km.
v0 = 80 km/h, v` = 90
km/h, ã = 5184 km/h2.

Figure 2: Robustness vs
safe speed for D = 1 km.
v0, v` and ã as in fig. 1.

Figure 3: Robustness vs
safe speed for D = 0.3 km.
v0, v` and ã as in fig. 1.

We note that m(h, T) is the functional inverse (not algebraic inverse) of the robustness func-
tion, ĥ(vs). That is, a plot of h vs m(h, T) is the same as a plot of ĥ(vs) vs. vs.

Figs. 1–3 show robustness curves based on eq.(16) for 3 different values of the distance
between the sensors. In fig. 1 we see the transition between the two rows of eq.(16). The
lower part of the curve results from the upper line of eq.(16), and the upper part of the
curve results from the lower line of eq.(16). The robustness curves in figs. 2 and 3 result
entirely from the upper line of eq.(16) because the values of Ta(h), eq.(15), are smaller for
these shorter distances, while ts(h) in eq.(10) does not change with D.

Eqs.(8) and (9) show that the anticipated velocity is v0 in the absence of uncertainty
(h = 0). If this predicted velocity is chosen as the safe speed, vs, then the robustness is
zero, as seen in all three figures. This is the zeroing property observed in all info-gap
robustness functions: predicted outcomes have no robustness against uncertainty in the
data and models upon which the predictions are based.

The positive slopes of the curves in figs. 1–3 show that the robustness increases (which
is good) as the safe speed is raised (which is undesirable). This expresses the irrevocable
trade off between robustness and outcome requirement: More demanding outcomes (lower
vs) are less robust to uncertainty (lower ĥ).

Fig. 4 shows robustness curves for three different speed limits, v` = 85, 90 and 95 km/h.
The middle curve is the same as fig. 1. The curves coincide at low safe speeds, where the
robustness follows the upper line in eq.(16) which does not depend on the speed limit, v`.
But then the curves diverge at greater safe speeds when the robustness shifts to the lower
line in eq.(16). It is significant that the robustness improves as the speed limit is decreased.

We can summarize the conclusions from figs.1–4 as follows. First recall that m(h, T),
thought of as a function of h, is the functional inverse (not algebraic inverse) of the robust-
ness function, ĥ(vs). Thus a derivative of m(h, T) with respect to D or v` has the opposite
sign as the same derivative of ĥ(vs). Employing eq.(16), and as demonstrated in fig. 4, we
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Figure 4: Robustness vs
safe speed. v0 = 80 km/h,
ã = 5184 km/h2.

Figure 5: Robustness vs
safe speed. (v`, D) =
(90, 5) (dash). (v`, D) =
(100, 3) (solid).

see that the robustness decreases as the speed limit is enlarged:

∂m(h, T)
∂v`

≥ 0 =⇒ ∂ĥ(vs)

∂v`
≤ 0 (17)

Likewise, based on eq.(16) and as seen in figs.1–3, the robustness decreases as the do-
main get larger:

∂m(h, T)
∂D

≥ 0 =⇒ ∂ĥ(vs)

∂D
≤ 0 (18)

Eqs.(17) and (18) show that changes of v` and D in different directions have conflicting
influences on the robustness, as we now discuss.

Fig. 5 shows robustness curves for two combinations of the speed limit, v`, and the sen-
sor separation distance D. These robustness curves cross one another, which presents a
dilemma to the regulator in choosing between these design options. The design (v`, D) =

(100, 3) (solid curve) is more robust than (v`, D) = (90, 5) (dashed curve) at low safe speeds
(below about 102 km/h), while (90, 5) is more robust than (100, 3) at greater safe speeds.
Neither design is robust-dominant over the other. The choice between them depends on
the regulator’s choice of the safe speed, and the judgment of how much robustness is nec-
essary. This intersection between the robustness curves entails the potential for a reversal
of preference between these two design options.

We can understand the intersection of the robustness curves in fig. 5 as expressing the
conflicting tendencies demonstrated in figs. 1–3 and fig. 4. Figs. 1–3 show that the robust-
ness increases as the domain gets smaller, while fig. 4 shows that the robustness decreases
as the maximal element gets greater. The solid robustness curve in fig. 5 has a smaller
domain and a larger maximal element than the dashed robustness curve. The tendencies
asserted in the previous figures are in conflict, and the robustness curves intersect.
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4 Example: Inferring the Level of Economic Activity

In the speed-limit example of section 3 the average is used to deter or modify behavior.
We now consider inference from an observed average in support of decision making. We
will see that the assessment of robustness in the inference problem is structurally similar
to the behavior-deterrence example of section 3. We will also consider opportuneness from
propitious uncertainty.

The average GDP per capita in a heterogenous region is used to determine the degree
of public support to the region. Suppose the goal of the public support is to assure that
the lowest percentile exceeds a specified minimal critical value. If the average is above this
critical value, and the local GDP per capita varies little over the region, then little or no sup-
port is needed. However, if the average is above the critical value, but the local GDP per
capita varies greatly, then substantial support will be needed. As noted in section 1, GDP
per capita varies greatly between regions in some countries, and much less in others. If the
allocation to the region will be based on the average, how confident are we that the poorest
part of the region exceeds a minimal critical value vmin? Confidence in an allocation can be
assessed with the robustness function that assesses the degree of immunity to pernicious
uncertainty. Questions similar to those explored in section 3 arise here: how does confi-
dence in the inference vary with the size of the region, with the observed average, and with
the critical value?

Uncertainty can be propitious, rather than pernicious, and things can be better that an-
ticipated. That is, uncertainty in the distribution of economic activity may be such that the
least productive are in fact quite fruitful. The opportuneness question is: how much uncer-
tainty is needed in order to enable (though not guarantee) an outcome (lowest productivity
in the region) that is better than anticipated? This is the converse of the robustness question
which is: how much uncertainty can be tolerated in order to guarantee that the outcome
(lowest productivity in the region) is acceptable? We derive the robustness function in
section 4.2 and the opportuneness function in section 4.3.

The GDP is itself an average over commodities and services. The questions of robust-
ness and opportuneness that we are exploring when considering the spatial average can be
similarly addressed to averages over commodities, services or other sectors.

4.1 Info-Gap Model of Uncertainty

Let v(x) denote the GDP per capita as a function of location in a region, and let v denote
the observed average GDP per capita in the region. The policy maker’s requirement is that
the GDP per capita exceeds a specified minimal value throughout the region:

v(x) ≥ vmin for all x ∈ [0, D] (19)

The policy maker wants to know how confident one can be that eq.(19) holds, given the
observed regional average, v.

The GDP per capita as a function of location, v(x), is positive throughout the region,
but how much it varies over the region is unknown. What we do know is the average
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productivity of the region, v, and limited further information. Let s denote a measure of
variation of productivity over the region. We don’t know the value of s, but we can suppose
that s will tend to increase as the size of the region increases. Let εD denote a rough estimate
of the value of s, based perhaps on historical variation. How much s deviates from εD is
unknown. This uncertainty in v(x) and s can be represented by the following info-gap
model:

U (h) =
{

v(x), s : v(x) > 0,
∣∣∣∣v(x)− v

s

∣∣∣∣ ≤ h, s > 0,
∣∣∣∣ s− εD

εD

∣∣∣∣ ≤ h
}

, h ≥ 0 (20)

This info-gap model encodes the observed average, v, the estimated variation, εD, and
quantifies the uncertain deviation of v(x) and s over the region. Once again, as in the
info-gap model of eq.(6) in section 3, the info-gap model is not a single set, but rather an
unbounded family of nested sets of v(x) and s values. Furthermore, there is no known
worst case and the uncertainty is not probabilistic.

4.2 Robustness Against Uncertainty

The robustness to uncertainty in the local GDP per capita and in its variability is the greatest
horizon of uncertainty, h, up to which the lowest local GDP per capita is no less than the
minimal value vmin, for all GDP profiles v(x) and variations s in the uncertainty set U (h):

ĥ(vmin) = max
{

h :
(

min
v,s∈U (h)

min
x∈[0, D]

v(x)
)
≥ vmin

}
(21)

Let m(h) denote the inner double minimum in the definition of the robustness function,
eq.(21). Define the function z+ = z for z ≥ 0 and z+ = 0 otherwise. The minimum on v(x)
and s occurs for v(x) = (v− sh)+ and s = (1 + h)εD. This results in a productivity profile
that is independent of x. Thus we see that:

m(h) = [v− (1 + h)εDh]+ (22)

The robustness is the greatest value of h at which m(h) ≤ vmin.
Consider values of h that satisfy the relation:

(1 + h)εDh ≤ v (23)

In that case, the robustness is the solution for h of:

v− (1 + h)hεD = vmin (24)

This has one positive root, and it satisfies eq.(23). Thus this root is the robustness:

ĥ(vmin) =
−1 +

√
1 + 4

εD (v− vmin)

2
, for vmin ≤ v (25)

The robustness function equals zero for values of vmin greater than v, which means that val-
ues greater than the observed average cannot be guaranteed at any horizon of uncertainty.
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We note from eq.(25) that the robustness increases as the observed average GDP in-
creases. Also, the robustness decreases as the size of the region, D, increases. Specifically:

∂ĥ(vmin)

∂v
> 0 (26)

∂ĥ(vmin)

∂D
< 0 (27)

As v, the observed path-average GDP per capita, increases, the info-gap model in eq.(20)
shifts to include larger productivity profiles. As a result it becomes less challenging for
paths to satisfy the outcome requirement. Eq.(26) expresses this by the robustness increas-
ing as v increases. In other words, the robustness, for achieving at least vmin, increases as
the average increases. This is the analog of fig. 4 in which the robustness, for achieving
speed no more than vs, increases as the speed limit decreases.

As D increases and the reference path gets longer, the requirement that all paths satisfy
the outcome requirement at all locations becomes more challenging. This is expressed in
eq.(27) by the robustness decreasing as D increases. This is the analog of figs. 1–3 in which
the robustness decreases as the distance over which the speed is averaged increases.

4.3 Opportuneness From Uncertainty

The opportuneness from uncertainty in the GDP function v(x) and its variability s, is the
lowest horizon of uncertainty, h, at which at least one realization of v(x) and s results
in a GDP per capita that is everywhere no less than a wonderfully large value, vmax. The
opportuneness is the complement of the robustness that was defined in eq.(21). Specifically,
the opportuneness function is:

β̂(vmax) = min
{

h :
(

max
v,s∈U (h)

min
x∈[0, D]

v(x)
)
≥ vmax

}
(28)

Let us compare the definitions of robustness and opportuneness in eqs.(21) and (28).
Reading the operators from left to right, the max-min-min of robustness is inverted to
min-max-min in the opportuneness. The robustness is the maximum h at which the worst
(minimum) couplet (v, s) yields GDP no less than vmin at every point. In contrast, the
opportuneness is the minimum h at which the best (maximum) couplet (v, s) yields GDP
no less than vmax at every point. The robustness is the greatest horizon of uncertainty at
which the critical outcome is guaranteed, while the opportuneness is the lowest horizon of
uncertainty at which the windfall outcome is possible.

Let M(h) denote the inner max-min in eq.(28), which occurs when the GDP function is
as large as possible in the uncertainty set U (h) of the info-gap model in eq.(20). That is,
M(h) is obtained from v(x) = v + sh and s = (1 + h)εD. Thus:

M(h) = v + (1 + h)hεD (29)

which is independent of the location, x. The opportuneness is the smallest value of h satis-
fying:

v + (1 + h)hεD ≥ vmax (30)
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Solving for h in this relation at equality yields the following explicit expression for the
opportuneness function:

β̂(vmax) =
−1 +

√
1 + 4

εD (vmax − v)

2
, for vmax ≥ v (31)

The opportuneness function equals zero for values of vmax lower than v, which means that
no uncertainty is required in order to enable (though not guarantee) values less than the
observed average.

We note from eq.(31) that the opportuneness function decreases as the observed average
GDP per capita increases. Also, the opportuneness function decreases as the size of the
region, D, increases. Specifically:

∂β̂(vmax)

∂v
< 0 (32)

∂β̂(vmax)

∂D
< 0 (33)

Recall that a small value of the opportuneness function indicates that the corresponding
outcome is possible (though not guaranteed) at a small horizon of uncertainty, which is
desirable. This is distinct from the robustness function for which large values are desirable.

Eq.(32) is readily understood. As the observed average productivity, v, increases, the
info-gap model of eq.(20) shifts to include larger productivity functions v(x). As a result,
a productivity function that exceeds the windfall value vmax occurs at a lower horizon of
uncertainty. In short, an increase in the average regional productivity enhances the oppor-
tuneness.

Eq.(33) is at first surprising. One might not expect that lengthening the reference path
enhances the possibility of a productivity profile that exceeds the windfall value vmax at
all points on the path. To understand this result we examine the algebraic derivation. We
note that M(h) in eq.(29) increases as D increases. That is, the greatest possible value of
the minimal productivity, M(h), increases as the path length increases. Algebraically, this
results because the range of s increases as the path length, D, increases. That is, long paths
have greater potential for productivity profiles that are large everywhere. This is precisely
what eq.(33) states. It is also true that long paths have the greater potential for productivity
profiles that are small everywhere. The opportuneness function expresses a potential for
windfall, unlike the robustness function that expresses a guarantee of a critical value.

In comparing eqs.(26) and (32) we see that robustness and opportuneness are sympa-
thetic with respect to change in the magnitude of the observed average GDP per capita.
(Recall that large ĥ and small β̂ are desirable.) A change in v that improves one of these
functions also causes the other function to improve.

Comparing eqs.(27) and (33) we see that robustness and opportuneness are antagonistic
with respect to change in the size of the region. A change in size that improves one of these
functions causes the other function to become worse.
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5 Example: Statistical Inference

We first formulate a simple statistical test, and then we introduce info-gap uncertainty and
explore robustness and opportuneness.

Consider a process, Q, with known mean µ0 and known variance σ2
0 . Let v be the sample

mean of an unknown process. We wish to determine if this mean is consistent with the
process Q. That is, we wish to decide between the following two hypotheses on the basis
of the observed sample mean.

H0: The unknown process is Q

H1: H0 is false
(34)

Consider the statistic:
z =

v− µ0

σ0
(35)

z has a standard normal distribution if v is based on a large sample and if H0 is true.
Let Φ(z) denote the standard normal cumulative distribution function. The probability
of falsely rejecting H0 is α where:

Φ(|z|) = 1− α

2
(36)

α is the level of significance for rejecting H0. That is, for a given value of z, a small value of
α supports the rejection of H0.

The observation, v, is the average of measurements of a function v(x) defined on the
domain [0, D]. The measurements are made at equally spaced points:

xn = (n− 1)δ, n = 1, 2, . . . , N (37)

where the number of measurements, N, satisfies:

D− δ < (N − 1)δ ≤ D (38)

We stress that the measurement increment, δ, is fixed and does not depend on the size of
the domain, D.

5.1 Info-Gap Model of Uncertainty

The sampled function derives from an uncertain process on the domain [0, D]. We know
several things about that process. The observed average of one realization of the process is
known, and we denote it as vo. The increment of measurement locations, δ, and the size of
the domain, D, are known. An estimate of the magnitude of variability of the process, that
may depend on the size of the domain, is the known function s(D), though larger variation
is definitely possible. We will also adopt the simplifying assumption that the functions v(x)
of the unknown process are positive.

Combining this information we can say that realizations of the uncertain process should
tend to be around the observed value vo with variation of ±s(D) or more. We represent
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this uncertainty with the following info-gap model:

U (h) =
{

v(x) : v(x) > 0,
∣∣∣∣v(x)− vo

s(D)

∣∣∣∣ ≤ h
}

, h ≥ 0 (39)

Like all info-gap models, the uncertainty is encoded non-probabilistically as an unbounded
family of nested sets of possible realizations of the uncertain entity.

The observed sample average, vo, of a specific realization of the uncertain process gen-
erates a value of the statistic z in eq.(35). For simplicity we will assume that:

vo ≥ µ0 (40)

Given an observed average, vo, the level of significance is:

α̃ = 2
[

1−Φ
(

vo − µ0

σ0

)]
(41)

We note that α̃ increases as µ0 increases, recalling eq.(40). That is, it is “more difficult” to
reject H0 as µ0, the average of the process Q, approaches the observed average, vo.

5.2 Robustness Against Uncertainty

Suppose that this observed level of significance is large enough that H0 would not be re-
jected. How confident are we in this decision, in light of the uncertainty in the unknown
process as represented by the info-gap model of eq.(39)? The level of significance addresses
the statistical uncertainty of the sampling process, while we must also account for the info-
gap uncertainty of the unknown process itself. More generally, for any value of α that would
lead to acceptance of H0, how confident are we that other realizations of the process would
be consistent with this? That is, for any given α, and in light of the info-gap uncertainty,
how confident are we in accepting H0, as expressed by:

Φ(|z|) ≤ 1− α

2
(42)

We assess the confidence with the robustness function, which is the greatest horizon
of uncertainty, h, up to which Φ(|z|) does not exceed the righthand size of eq.(42) for any
function in the uncertainty set U (h). The robustness is defined as follows:

ĥ(α) = max
{

h :
(

max
v∈U (h)

Φ(|z(v)|)
)
≤ 1− α

2

}
(43)

A large value of robustness implies high confidence in non-exceedance of the righthand
side of eq.(36). Low robustness implies the contrary.

We note that a different robustness function would result if the observed level of signif-
icance was small enough to imply rejection of H0. Specifically, the inequalities in eqs.(42)
and (43) would be reversed, and the inner maximum in eq.(43) would be a minimum. We
will not pursue this further.
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The average of a process function v(x) is:

v =
1
N

N

∑
n=1

v(xn) (44)

Let m(h) denote the inner maximum in the definition of the robustness function, eq.(43).
Φ(·) is a monotonically increasing function, and we are assuming eq.(40), so m(h) occurs
when z is maximal. From eqs.(35) and (44), this occurs, at horizon of uncertainty h, when
v(x) = vo + s(D)h. This maximum does not depend on position. Thus this expression
equals the maximum average at horizon of uncertainty h and we can write:

m(h) = Φ
(

vo + s(D)h− µ0

σ0

)
(45)

The robustness is the greatest horizon of uncertainty, h, at which this expression does not
exceed 1− α

2 . That is:
vo + s(D)h− µ0

σ0
≤ Φ−1

(
1− α

2

)
(46)

The robustness function is the solution for h of this relation at equality:

ĥ(α) =
σ0Φ−1 (1− α

2

)
− (vo − µ0)

s(D)
(47)

or zero if this expression is negative.
We see in eq.(47) that the robustness equals zero when α equals the estimated value

based on the observed mean, α̃ in eq.(41).
Eq.(47) also shows that the robustness decreases as α increases from zero to one. A

low value of α implies a small level of significance for accepting H0. That is, small α mil-
itates against accepting H0. Large robustness implies confidence, vis à vis the info-gap
uncertainty in the unknown process, in the corresponding value of α. In other words, if
the observed level of significance, α̃, implies acceptance of H0, then the confidence in this
acceptance, with respect to the info-gap uncertainty in the function v(x), increases as we
consider smaller values of α.

We also see from eq.(47) that:

∂ĥ(α)
∂D

= −c
∂s(D)

∂D
(48)

where c is a known positive quantity. We recall from the discussion preceding eq.(39) that
s(D) is an estimate of the magnitude of variability of the process. This estimate may in-
crease or decrease with the domain size, D, or may be independent of D.

We note in eq.(47) that the robustness for accepting H0 increases as µ0 increases. In
light of eq.(40), this is because the disparity between v(x) and Q decreases as the disparity
decreases between the observed average, vo, and the average of the process Q, which equals
µ0.
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Figure 6: Robustness vs
level of significance. vo =
2 , ε = 0.3 where s(D) =
εD, σ0 = 0.5.

Figure 7: Robustness and
opportuneness vs level of
significance. vo = 2 , ε =
0.3 where s(D) = εD, σ0 =
0.7.

We also see from eq.(47) that:

∂ĥ(α)
∂α

= − σ0

2s(D)

∂Φ−1(p)
∂p

≤ 0 (49)

Combining eqs.(48) and (49) we see that the robustness changes with respect to D and α in
the same direction if and only if the estimated error, s(D), increases as the domain size, D,
increases. In that case, an increase in D and a decrease in α result in conflicting trends in
the robustness. We can expect the resulting robustness curves to cross one another, as seen
previously in fig. 5.

Fig. 6 shows crossing robustness curves for two different choices of µ0 and D, with an at-
tendant dilemma for the decision maker in planning the measurement and in accepting H0.
The estimated level of significance, α̃ in eq.(41), increases as µ0 increases, and does not de-
pend on D. However, the robustness in eq.(47) decreases as the domain size, D, increases.
More precisely, the slope of the robustness curve decreases as D increases, implying that
ĥ increases more slowly as α decreases. Succinctly, the “cost of robustness” increases as
D increases. Thus the combination (µ0, D) = (1.5, 5) is putatively more definitive (larger
α̃) than (µ0, D) = (1.4, 3). However, the cost of robustness is greater for (1.5, 5) than for
(1.4, 3). The result is that the robustness curves cross one another, and neither option is
robust dominant. Stated differently, the choice of µ0 = 1.5 gives greater confidence in ac-
cepting H0, if there is no info-gap uncertainty. However, in light of that uncertainty, one
may choose to forego the larger domain and to accept the lower µ0 in order to enhance the
robustness to uncertainty.

5.3 Opportuneness From Uncertainty

The robustness function protects against pernicious uncertainty, and the opportuneness
function addresses the possibility of wonderful outcomes resulting from propitious uncer-
tainty. Continuing as in section 5.2, we suppose that the observed level of significance, α̃ in
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eq.(41), is large enough so that H0 would not be rejected. A larger value of α would imply
even greater statistical confidence in accepting H0. How much info-gap uncertainty in the
function v(x) is needed for such wonderfully strong acceptance of H0 to be possible?

Note that eq.(42) implies that α ≤ 2 [1−Φ(|z|)]. Thus a small value of Φ(|z|) implies
a large value of α. Hence we ask: what is the lowest horizon of uncertainty, h, at which
Φ(|z|) could be quite small and α could be quite large? In other words, for any value of α,
what is the lowest horizon of uncertainty at which the lowest value of Φ(|z|) is not greater
than 1− α

2 ? The answer is the opportuneness function whose formal definition is:

β̂(α) = min
{

h :
(

min
v∈U (h)

Φ(|z(v)|)
)
≤ 1− α

2

}
(50)

If the horizon of uncertainty is no less than β̂(α) then it is possible, though not guaranteed,
that the level of significance will be as large as α.

Comparing the opportuneness function in eq.(50) with the robustness function in eq.(43)
we see that they are complementary: the min-min of opportuneness is the complement of
the max-max of robustness. Their meanings are also complementary. The robustness is the
greatest horizon of uncertainty at which failure cannot occur, while the opportuneness is
the lowest horizon of uncertainty at which wonderful windfall is possible.

We derive an explicit expression for the opportuneness function as follows, continuing
with the assumption of eq.(40).

Let M(h) denote the inner minimum in the definition of the opportuneness function
in eq.(50). Φ(|z(v)|) decreases monotonically as |z| decreases. Thus this inner minimum
occurs when |z| is as small as possible. Hence, since v(x) > 0, this occurs when v(x) is min-
imal at each measurement point. Thus, in analogy to eq.(45), and recalling the assumption
of eq.(40), the inner minimum is:

M(h) = Φ

(
(vo − s(D)h)+ − µ0

σ0

)
(51)

(Recall the definition of an exponent “+” following eq.(21).) From eq.(41) we see that the
righthand side equals 1− α̃

2 when h = 0. At larger h the righthand side is lower and equals
1− α

2 for some α > α̃. Equating M(h) to 1− α
2 and solving for h yields the opportuneness

as a function of the level of significance α:

β̂(α) =
vo − µ0 − σ0Φ−1 (1− α

2

)
s(D)

(52)

or zero if this is negative. β̂(α) increases from zero as α increases from α̃. This expresses
the opportuneness trade off: a greater value of the level of significance, implying stronger
acceptance of H0, is possible only at greater horizon of uncertainty.

Fig. 7 shows opportuneness curves for two choices of the parameters µ0 and D. The
robustness curves with these parameter values are reproduced from fig. 6. The positive
slope of each opportuneness curve expresses a trade off whose meaning is that a large and
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desirable level of significance, α, is possible — though not guaranteed — at a large horizon
of uncertainty.

Employing eqs.(47) and (52) we see that the robustness and opportuneness depend on
the domain size, D, only through the uncertainty weight s(D). Let us suppose, then, that
s(D) in fact depends on D. We now see that, for any values of αc and αw:

∂ĥ(αc)

∂D
∂β̂(αw)

∂D
=

∂ĥ(αc)

∂s
∂β̂(αw)

∂s

(
∂s
∂D

)2

> 0 (53)

Any change in the size of the domain, D, that increases the robustness function, ĥ(αc), also
increases the opportuneness function, β̂(αw), at any values of αc and αw. The robustness
function is the immunity against failure so a large value is desirable, while the opportune-
ness function is the immunity against wonderful windfall so a small value is desirable.
Eq.(53) shows that robustness and opportuneness are antagonistic with respect to the size
of the domain: Any change in D that improves one of these functions worsens the other.

In contrast, eqs.(47) and (52) show that robustness and opportuneness are sympathetic
with respect to change in vo, µ0 or σ0:

∂ĥ(αc)

∂x
∂β̂(αw)

∂x
≤ 0 (54)

when x is vo, µ0 or σ0. Any change in one of these variables that improves one of these
functions also improves the other.

6 Robustness as a Proxy for the Probability of Success

The robustness to uncertainty for achieving a specified goal, as defined in eq.(4) and based
on an info-gap model of uncertainty satisfying eqs.(2) and (3), is entirely non-probabilistic.
Nonetheless, in some situations a change in the planner’s decision that augments the ro-
bustness will also augment the probability of success. When this is true we say that robust-
ness is a proxy for the probability of achieving the goal. When the proxy property holds
one can enhance or maximize the probability of success even when one has no knowledge
of the relevant probability distributions. One will not know the value of the probability
of success, but by maximizing the non-probabilistic robustness to uncertainty one will also
maximize the probability of success, when the proxy property holds. Robustness is not
always a proxy for probability, though it arises in a range of situations, including manage-
ment of risky assets, forecasting, and foraging by animals (Ben-Haim, 2009, 2014). How-
ever, Davidovitch (2009) has shown that very strict conditions must prevail in order for the
proxy property to hold.

In this section we explore the proxy property for the examples in the previous sections.
In sections 6.1, 6.2 and 6.3 we identify specific conditions under which the proxy property
holds for the speed limit example of section 3, the economic example of section 4, and the
statistical inference of section 5.
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6.1 Speed Limits

We begin by demonstrating that the robustness increases as the speed limit, v`, increases.
We then explore the dependence of the probability of success on the speed limit. Combin-
ing these considerations will yield the proxy property.

The conditions on the speed-profile function, v(t), in the info-gap model of eq.(6) at
horizon of uncertainty h, imply that:

0 < v(t) ≤ (1 + h)v` for all t ≥ 0 (55)

Consider the info-gap model of eq.(6) for two different values of the speed limit, U (h, v`)
and U (h, v′`). Eq.(55) implies that the uncertainty sets are nested as v` increases:

v` < v′` if and only if U (h, v`) ⊆ U (h, v′`) (56)

Recalling the definition of m(h, t) following eq.(7) we see that eq.(56) implies:

v` < v′` if and only if m(h, t|v`) ≤ m(h, t|v′`) (57)

Recalling that m(h, t) is the inverse of the robustness defined in eq.(7), we see that eq.(57)
implies:

v` < v′` if and only if ĥ(vs, v`) ≥ ĥ(vs, v′`) (58)

Robustness increases if and only if the speed limit decreases.
We now consider the probability of success, which is the probability that the maximum

velocity does not exceed the safe speed vs. For notational convenience let µ denote the
maximum velocity during [0, T]:

µ = max
t∈[0,T]

v(t) (59)

The formal definition of the probability of success is the following cumulative probability
distribution function:

Ps(vs|v`) = Prob (µ ≤ vs| v`) (60)

Let ps(vs|v`) denote the corresponding probability density function of µ. We can define
these probability functions, but we cannot calculate them because they are unknown.

Recall that v` is the regulator’s choice of the speed limit, while vs is the greatest safe
speed that depends on the road and driving conditions. One might reasonably anticipate
that ps(vs|v`) — viewed as a function of vs — shifts to higher values as v` is raised, reflect-
ing drivers’ lowered restraint as the regulator raises the speed limit. That is, one might
anticipate that higher speed limits are imposed when higher speeds are safe. However,
there is no apodictic necessity for this shift in ps(vs|v`). One concludes that, if ps(vs|v`)
shifts to the higher values as v` is raised, then:

v` < v′` if and only if Ps(vs|v`) ≥ Ps(vs|v′`) (61)

Continuing with this assumption regarding ps(vs|v`), we see from eqs.(58) and (61) that
robustness is a proxy for probability of success:

ĥ(vs, v`) ≥ ĥ(vs, v′`) if and only if Ps(vs|v`) ≥ Ps(vs|v′`) (62)
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We stress that this proxy property is not universal, and does not necessarily hold if
ps(vs|v`) does not shift to higher values as v` is raised. We also note that, while eq.(62) is
bi-directional and symmetric between robustness and probability, the proxy property refers
specifically to the implication from robustness to probability. The implication from robust-
ness to probability is significant because the robustness function is epistemically sparser
than the probability distribution and entails no explicit knowledge of probabilities. When
the proxy property of eq.(62) holds, one can enhance the probability of success by enhanc-
ing the non-probabilistic robustness to uncertainty.

6.2 Economic Activity

We now derive a proxy property for the robustness function of economic activity.
The robustness function in eq.(25) immediately shows that robustness increases as the

average GDP increases. More precisely:

v < v′ if and only if ĥ(vmin|v) ≤ ĥ(vmin|v′) (63)

We now define the probability of success, which is the probability that the minimum
GDP along the path is no less than vmin, conditioned on the average GDP, v. Define the
minimum along the path:

µ = min
x∈[0,D]

v(x) (64)

The probability of success is defined as:

Ps(vmin|v) = Prob(µ ≥ vmin|v) (65)

Let ps(vmin|v) denote the probability density function for Ps(vmin|v).
One can reasonably expect that the distribution of minimal GDP values shifts to the

right as the average GDP increases, recognizing that this does not necessarily hold. That is,
one can expect that ps(vmin|v), viewed as a function of vmin, shifts to the right as v increases.
We refer to this as the “shifting property”, which asserts:

v < v′ if and only if Ps(vmin|v) ≤ Ps(vmin|v′) (66)

When this shifting property holds we see that eqs.(63) and (66) imply that robustness is
a proxy for probability of success:

ĥ(vmin|v) ≤ ĥ(vmin|v′) if and only if Ps(vmin|v) ≤ Ps(vmin|v′) (67)

6.3 Statistical Inference

We now consider the proxy property for the robustness function in eq.(47), which pre-
sumes that the observed level of significance, eq.(41), is large enough that H0 would not be
rejected.
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We know the mean of the process Q, and we consider two different realizations of this
mean:

µ0 < µ′0 (68)

where both values satisfy eq.(40) for the observed average value, vo.
The robustness function in eq.(47) shows that the robustness for not rejecting H0 in-

creases as the mean of the process Q increases:

µ0 < µ′0 if and only if ĥ(α|µ0) ≤ ĥ(α|µ′0) (69)

This means that the robustness for not rejecting H0 increases as the average of the process
Q increases.

Now consider the probability of success, which we define as the probability that |z| does
not exceed the righthand size of eq.(42), given that H0 holds:

Ps(α|µ0) = Prob
(

Φ(|z|) ≤ 1− α

2

)
(70)

where z is defined in eq.(35).
It is evident that:

µ0 < µ′0 if and only if |z(µ0)| > |z(µ′0)| if and only if Φ(|z(µ0)|) ≥ Φ(|z(µ′0)|) (71)

where both µ and µ′ satisfy eq.(40). Thus the probability of success increases as the mean
of the process Q increases. That is, combining eqs.(70) and (71) we see that:

µ0 < µ′0 if and only if Ps(α|µ0) ≤ Ps(α|µ′0) (72)

Combining eqs.(69) and (72) we see that

ĥ(α|µ0) ≤ ĥ(α|µ′0) if and only if Ps(α|µ0) ≤ Ps(α|µ′0) (73)

This means that the robustness is a proxy for the probability of success.

7 Conclusion

We have studied three examples with the concepts of robustness and opportuneness as de-
veloped in info-gap decision theory. The robustness function equals the greatest horizon of
uncertainty up to which a critical requirement is guaranteed to be satisfied. This underlies
the robust-satisficing prioritization of decision alternatives: one option is preferred over an-
other option if the first option satisfies the requirement over a greater range of uncertainty
than the second option. What is optimized is the robustness to uncertainty, while outcomes
are satisficed rather than optimized. The opportuneness function equals the lowest hori-
zon of uncertainty at which wonderful windfall outcomes — better than anticipated —
are possible, though not necessarily guaranteed. This underlies the opportune-windfalling
prioritization of options.
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Section 3 discussed the choice of speed limits to deter dangerous driving, where the
speed profile of the driver is deeply uncertain. We observed that the predicted velocity
has no robustness to uncertainty in the speed profile (this illustrates the zeroing property).
Only velocities in excess of the prediction have positive robustness (this illustrates the trade
off property). We examined two decision variables: the speed limit and the size of the
domain within which the speed is measured. We showed that robustness to uncertainty
decreases as either the speed limit or the domain-size increases. Simultaneous changes of
these two factors in different directions therefore have conflicting impact on robustness to
uncertainty. This can cause the corresponding robustness curves to cross one another, and
this raises the potential for a reversal of preference between different combinations of these
decision variables.

Section 4 explored inference about extremes of economic activity based on an observed
spatial average of the GDP, with implications for policy to ameliorate poverty. We con-
sidered both pernicious and propitious uncertainty in the spatial variation of the GDP per
capita. We found that the robustness increases as the observed path-averaged GDP per
capita increases. However, the robustness decreases as the path-length for averaging the
GDP increases. In contrast, the opportuneness from propitious uncertainty improves both
as the path length grows and as the observed average GDP grows.

Section 5 explored a statistical hypothesis test regarding an unknown variable process
whose mean has been measured. We showed that the robustness decreases as the level
of significance, α, increases. In other words, if the observed level of significance implies
acceptance of the null hypothesis, then the confidence in this acceptance, with respect to
the info-gap uncertainty, increases as we consider smaller values of the level of significance.
We demonstrated the potential for reversal of preference between different choices of the
planning variables, as expressed by crossing of the corresponding robustness curves. We
also explored the opportuneness from propitious uncertainty. We showed that any change
in the domain size that improves the robustness causes deterioration in the opportuneness:
these two functions are antagonistic with respect to the size of the domain on which the
uncertain function is defined. In contrast, we showed that robustness and opportuneness
are sympathetic with respect to change in any of several other design variables.

Section 6 discussed the concept of robustness as a proxy for the probability of success.
When the proxy property holds, the probability of success is maximized by maximizing
the robustness to uncertainty, even though the latter function entails no probabilistic in-
formation. We demonstrated specific conditions under which the robustness functions of
sections 3 to 5 display the proxy property.
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A Maximum Acceleration

Consider any infinitesimal segment of length dx along the road. The speeds at the start and
end of this segment are related as:

v(x + dx) = v(x) +
dv(x)

dx
dx (74)

The derivative in this relation can be written:

dv(x)
dx

=
dv(t)

dt
dt
dx

=
v̇(t)
v(x)

(75)

where v̇(t) is the temporal acceleration of the car. Combining the last two relations yields:

v(x + dx) = v(x) +
v̇(t)
v(x)

dx (76)

Hence, assuming that v(x) is positive, the increment in velocity on any infinitesimal seg-
ment of road is maximal if the car accelerates maximally. The cumulative effect is that the
final speed is maximal if the car accelerates maximally throughout the travel, even though
this actually minimizes the time during which acceleration occurs.
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