27. Uncertain lotteries. (p.166) Consider a lottery with two prizes whose values are $v_{\ell}>v_{\mathrm{s}}$. Each participant wins either the large prize or the small prize. The probability of winning the larger prize is uncertain; the best estimate of this probability if \widetilde{p}; and the info-gap model for uncertainty in the probability is:

$$
\begin{equation*}
\mathcal{U}(h, \widetilde{p})=\left\{p: 0 \leq p \leq 1,\left|\frac{p-\widetilde{p}}{\widetilde{p}}\right| \leq h\right\}, \quad h \geq 0 \tag{90}
\end{equation*}
$$

(a) For any critical value of the expected reward v_{c}, such as the cost of a lottery ticket, what is the robustness, to uncertainty in \widetilde{p}, of winning at least v_{c} on average?
(b) Now consider a different lottery with prizes $v_{\ell}^{\prime}>v_{\mathrm{s}}^{\prime}$ and estimated probability \tilde{p}^{\prime} of winning v_{ℓ}^{\prime}. Furthermore, the estimated average prize is now greater: $\tilde{p}^{\prime} v_{\ell}^{\prime}+(1-\widetilde{p}) v_{\mathrm{s}}^{\prime}>\widetilde{p} v_{\ell}+(1-\widetilde{p}) v_{\mathrm{s}}$. However, the smaller prize is now even smaller: $v_{\mathrm{s}}^{\prime}<v_{\mathrm{s}}$. The uncertainty of the probability is represented with the info-gap model of eq.(90), now centered on \widetilde{p}. Under what conditions (e.g., with what values of v_{c}) will you prefer this new lottery? (Consider the crossing of the robustness curves of these two lotteries.)

