Info-Gap Theory Concepts and Applications

Yakov Ben-Haim Technion Israel Institute of Technology

Outline

Risk or Uncertainty?

Probability is powerful, but ignorance is not probabilistic

Uncertainty and the optimization imperative

- Limits of prediction and outcome-optimization
- Robust satisficing

Rural poverty and exploiting natural resources

Risk and Uncertainty

Probabilistic risk

or Knightian "true uncertainty"

 \bigcirc

Consequence	Probability
Drought	Stochastic process
Industrial accident	Actuarial tables
Tsunami	Historical data
Faulty air filters	Quality control data
Deception, scam	Sociological data

Risk is:

- Structured: known event space
- Modeled with probability
- Manageable (but still risky)

Frank Knight's "true uncertainty"

"The uncertainties which persist ... are uninsurable because there is no objective measure of the probability".

"We live on an island of knowledge surrounded by a sea of ignorance. As our island of knowledge grows, so does the shore of our ignorance." John A. Wheeler

D Discovery

- \circ America
- \circ Nuclear fission
- o Martians (not yet?)

D Discovery

Invention/Innovation

 \odot Printing press: material invention.

- \odot Ecological responsibility: conceptual innovation.
- French revolution: social innovation.

D Discovery

- Invention/Innovation
- S Surprise (Asymmetric uncertainty)
 - Ambush
 - Competitor's innovation
 - Natural catastrophe

D Discovery

- Invention/Innovation
- **S** Surprise (Asymmetric uncertainty)

What's the next D I or S ???

Knightian uncertainty:

- Unstructured: unknown event space.
- Indeterminate: no laws.
- Barely manageable.

Shackle-Popper

Indeterminism

GLS Shackle, 1903-1992 Karl Popper, 1902-1994

🕈 Technion - Israel Institute of Technology

Shackle-Popper Indeterminism

Intelligence:

What people know, influences how they behave.

Discovery:

Implies

What will be **discovered tomorrow** can't be **known today**.

Indeterminism:

Tomorrow's behavior can't be fully modelled today.

- Info-gaps, indeterminism: unpredictable.
- Ignorance is not probabilistic.

Uncertainty and the

Optimization Imperative

Doing your best:

What does that mean?

- Outcome optimization.
- Procedural optimization.

Implications for decision making: **Robust satisficing.**

Doing Your Best

Substantive outcome optimization:

- Predict outcomes of available options.
- Select predicted best option.

Doing Your Best

Substantive outcome optimization.

Useful under risk:

- Structured uncertainty.
- Reliable probabilistic predictions.

Substantive outcome optimization:

Useful under risk.

Not useful (irresponsible?) under uncertainty.

- Unstructured uncertainty.
- Unreliable predictions.

Questions

What do we (not) know?

Robustness questions:

- What is an essential outcome?
- How to be robust to surprise?

Opportuneness questions:

- What is a windfall outcome?
- How to exploit opportunities?

How to prioritize decision options?

What are the trade offs?

Answers

Robustness answer:

System model

Outcome requirement Uncertainty model

Opportuneness answer:

System model

Outcome aspiration

Uncertainty model

Two questions for decision makers:

- 1. What are our goals?
- 2. How much error/surprise can we tolerate?

Two questions for decision makers:

- 1. What are our goals?
- 2. How much error/surprise can we tolerate?

1. Satisficing: Achieving critical outcomes.

- Essential goals.
- Worst acceptable outcomes.
- Modest or ambitious.

Two questions for decision makers:

- 1. What are our goals?
- 2. How much error/surprise can we tolerate?

1. Satisficing: Achieving critical outcomes.

2. Robustness:

- Immunity to ignorance.
- Greatest tolerable error or surprise.

Two questions for decision makers:

- 1. What are our goals?
- 2. How much error/surprise can we tolerate?
- **1. Satisficing: Achieving critical outcomes.**
- 2. Robustness: Greatest tolerable error.
- Optimize robustness; satisfice goals: Procedural (not substantive) optimization.

Rural poverty & resource use

Rural poverty:

- Low agricultural productivity.
- High mortality/morbidity.
- Resentment and suspicion of government and NGOs.
- Local barons or warlords.

Innovative hi-tech proposal:

- New strains of plants.
- Better irrigation.
- Better fertilizers.
- Mechanization of field work.

Innovation dilemma of poverty

Potential gains of innovative resource exploitation:

- Higher agricultural productivity.
- Higher standard of living.
- Less arduous field work.

Potential losses of innovative resource exploitation:

- Failure of innovative crops, causing starvation.
- Social reorganization and upheaval.
- Rapid population growth, canceling gains (Malthus).

Dilemma: Innovation could be much better, or much worse. How to choose?

Innovation dilemma of poverty

Basic questions:

- What are the **goals**?
- What is our **knowledge**?
- What are the **uncertainties**?

Robustness of an option:

Maximum tolerable uncertainty.

The knowledge-bifurcation. Is your knowledge:

- Quantitative: data and equations?
- Qualitative: mainly insight and understanding, (perhaps with some numbers)?

We will consider both situations.

Field study of traditional State of the Art:

- Survival requirement: 1171 kg wheat/ha.
- Probability dist. of productivity well known.
- Survival probability: 0.95 (known).
- Survival catastrophe return-time:
 20 years (known).
- Knowledge about innovative option:
- Probability distribution of productivity estimated, uncertain.
- Survival probability: 0.9967 (estimate).
- Survival catastrophe return-time: 303 years (estimate).

The choice is clear?

Uncertainty of innovative option:

- Prob. distribution of productivity: estimated.
- True tail (rare but bad): highly uncertain.
- Survival probability & catastrophe return-time may be much greater than for SotA.

Robustness of an option: How much error can we tolerate? Greatest **uncertainty** at which current **knowledge** satisfies the survival **requirement**.

Robust prioritization: Innovation or SotA?

- Maximize robustness, satisfice outcome.
- Don't try to optimize the outcome.

- **Robustness of innovative option:**
- **Pessimist's thm. Trade off:**
- Zeroing: No robustness at
- estimated survival probability.

Robustness of SotA:

- Unbounded for survival probability up to 0.95.
- Zero for survival probability above 0.95.

Decision: Choose by robustly satisfying the requirement.

Summary of quantitative analysis of innov. dilemma:

- Zeroing: no robustness at estimated survival prob.
- Optimizer's fallacy: Prioritize by estimates.
- Trade off: robustness vs survival probability.
- Preference reversal: Resolution of dilemma.

Now for the hard part:

Qualitative analysis of robustness.

Robustness:

- We can't evaluate it quantitatively.
- Assess it qualitatively with **proxies for robustness**:
 - Resilience: rapid recovery of critical functions.
 - Redundancy: multiple alternative solutions.
 - Flexibility: rapid modification of tools and methods.
 - Adaptiveness: adjust goals and methods online.
 - Comprehensiveness: interdisciplinary system-wide coherence.

Basic questions:

- What are the **goals**?
- What is our **knowledge**?
- What are the **uncertainties**?

Bernard Amadei: girl water carriers.

• **Goal**: more potable water.

- Knowledge: Abundant fuel. Pump tech. Local culture.
- Uncertainties:
 - Long-term maintenance? Catastrophe if not.
 - Stable fuel supply?
 - Social response: what happens to the girls?

Robust solution:

- Satisfice the goal. Don't try to maximize. (Exploit trade off.)
- Co-design: local involvement in all stages (comprehensive).
- Train locals in pump maintenance (resilience, flexibility).
- Transition period of dual supply (redundancy).
- Long-term contact for emergency support (adaptiveness).
- Education for girls (and boys) (comprehensiveness).
- Quantitative analysis where possible.

Methodological re-cap:

- Trade off: higher ambition = lower robustness.
 Ambitions: Yes. Wishful thinking: No.
- Zeroing: Best-estimated outcomes have no robustness.
 Satisfice your goals. Optimize your robustness.
 Don't try to maximize the outcome.
- Preference reversal: sub-optimal may be more robust.
 Wood burning steam pump more robust to uncertainty than solar electric technology.

Summing Up

- **Risk or Uncertainty:**
 - Probabilistic risk, Knightian uncertainty (info-gaps).
 - Shackle-Popper indeterminism.
- Substantive outcome optimization: Useful under risk, not under uncertainty.
- Robust satisficing: Optimize robustness; satisfice goals.
 - Procedural (not substantive) optimization.
- **Opportune windfalling: use propitious uncertainty.**
- **Rural poverty and exploiting natural resources.**

Questions?

 \bigcirc