The Innovation Dilemma Uncertainty and Economic Policy

Yakov Ben-Haim Technion Israel Institute of Technology

Outline

Innovation dilemma: Definition and examples.

Severe uncertainty:

- The idea of an info-gap.
- Shackle-Popper indeterminism.

Info-gap robust satisficing:

Resolving the dilemma.

Example: Monetary policy selection.

Example: The innovation dilemma of rural poverty.

Innovation dilemma: The Idea

Choose between 2 options:

Option 1: (paradigm: new technology)

- New and innovative.
- Very promising.
- Higher uncertainty.

Option 2: (paradigm: standard procedure).

- State of the art.
- Less promising.
- Lower uncertainty.

Innovation dilemma: Examples

Automobile steering and collision control:

- Autonomous sensor-based computer control (innov).
- Human steering and foot-break system (SotA).

Monetary policy:

- New tools for new situations (innov).
- "A little stodginess at the CB" (Blinder) (SotA).

Peace or War:

- Bold diplomatic initiative (Sadat to Jerusalem, '77) (innov).
- Conventional diplomatic-military cycle (SotA).

Risk taking or avoiding:

- Nothing ventured, nothing gained (innov).
- Nothing ventured, nothing lost (SotA).

Outline

✓ Innovation dilemma: Definition and examples.

Severe uncertainty:

- The idea of an info-gap.
- Shackle-Popper indeterminism.

Info-gap robust satisficing:

Resolving the dilemma.

Example: Monetary policy selection.

Example: The innovation dilemma of rural poverty.

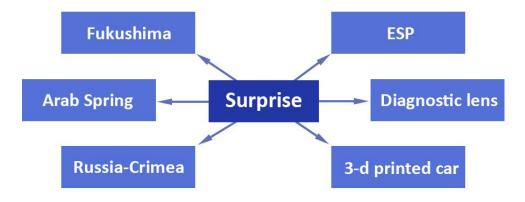
Risk and Uncertainty

Probabilistic risk

or Knightian "true uncertainty"

 \bigcirc

	Consequence	Probability
	Drought	Stochastic process
	Industrial accident	Actuarial tables
-	Tsunami	Historical data
	Faulty air filters	Quality control data
	Deception, scam	Sociological data


Risk is:

- Structured: known event space
- Modeled with probability
- Manageable (but still risky)

Frank Knight's "true uncertainty"

"The uncertainties which persist ... are uninsurable because there is no objective measure of the probability".

"We live on an island of knowledge surrounded by a sea of ignorance. As our island of knowledge grows, so does the shore of our ignorance." John A. Wheeler

D Discovery

- \circ America
- \circ Nuclear fission
- o Martians (not yet?)

D Discovery

Invention/Innovation

 \odot Printing press: material invention.

- \odot Ecological responsibility: conceptual innovation.
- French revolution: social innovation.

D Discovery

- Invention/Innovation
- S Surprise (Asymmetric uncertainty)
 - Ambush
 - Competitor's innovation
 - Natural catastrophe

D Discovery

- Invention/Innovation
- **S** Surprise (Asymmetric uncertainty)

What's the next D I or S ???

Knightian uncertainty:

- Unstructured: unknown event space.
- Indeterminate: no laws.
- Barely manageable.

Info-gap uncertainty: examples

- Transcendental probability.
- ECB interest rate.
- Phillips curve.

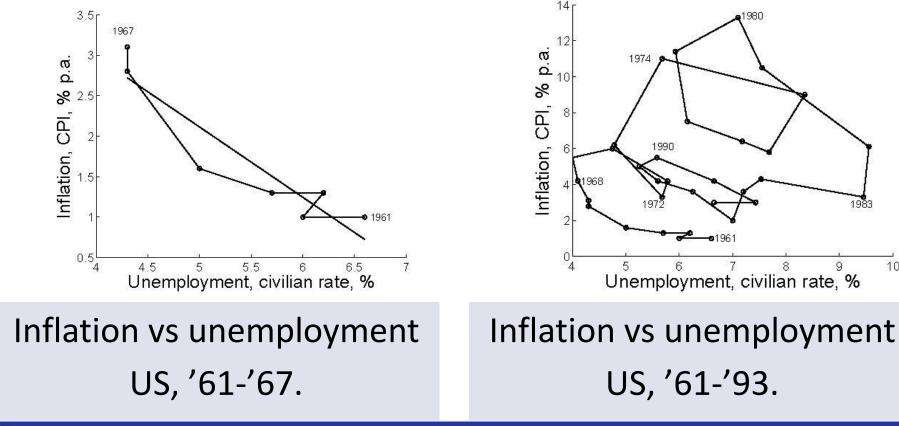
Riddle from Pillow Problems:

- "A bag contains 2 counters, as to which nothing is known except that each is either black or white. Ascertain their colours without taking them out of the bag."
- Answer: "One is black, and the other white."

Charles Dodgson

ECB Interest rate after 9/11

- Rate fairly constant through Aug 2001. After 9/11 ECB will reduce the rate.
- Info-gap:
- By how much will ECB reduce interest?
- What is ECB decision model?



Phillips Curve

Linear? Quadratic?

Info-gaps: data, processes, functional relations.

1983

10

What is an info-gap?

Info-gap: Disparity between what one does know and what one needs to know in order to make a responsible decision.

Two elements: **uncertainty** and **consequence**.

Distinct from probability.

Role a fair dice:

- Equal probabilities of 1, ..., 6.
- Known event space; known likelihoods.

Response to next financial crisis. The event space?

- 2 events: Either collapse or not.
- 8 events: collapse or not, short or long, local or global.
- More possibilities.
- Rolling an N-sided dice, but: Unknown event space; unknown likelihoods.

What is an info-gap?

- **Probabilistic thinking sometimes useful:**
- Israel 1984 inflation: 450% and growing.
- Moda'i/Bruno 5-point consensus plan: Budget cuts, wage and price control, ILS devalued and forex rigid, no ILS printing.
- Stabilization likely.
- Hence "No stabilization" unlikely.

Binary logic:

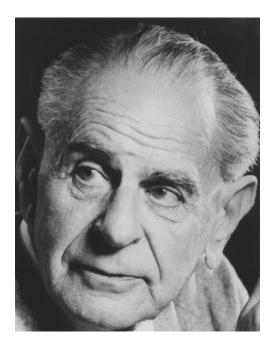
- Proposition either true or false.
- Excluded middle: proposition can't be both T and F.

Probability applies excluded middle to uncertainty: Proposition can't be both 'likely' and 'unlikely'.

What is an info-gap?

In economics we can't always exclude the middle.

Example: Policy based on regressing inflation vs employment.


- Theory-based structural trade off. Historical evidence.
 Likely basis for policy success.
- Lucas critique: Agents' responds to policy. Agents' response uncertain. Unlikely basis for policy success.

The policy maker faces an info-gap.

- Ignorance or ambiguity or potential for surprise.
- Two elements: **uncertainty** and **consequence**.
- Distinct from probability.
- In human affairs, info-gaps result from Shackle-Popper indeterminism.

Shackle-Popper indeterminism

GLS Shackle, 1903-1992 Karl Popper, 1902-1994

🕈 Technion - Israel Institute of Technology

Shackle-Popper Indeterminism

Intelligence:

What people know, influences how they behave.

Discovery:

Implies

What will be **discovered tomorrow** can't be **known today**.

Indeterminism:

Tomorrow's behavior can't be fully modelled today.

- Info-gaps, indeterminism: unpredictable.
- Ignorance is not probabilistic.

Outline

✓ Innovation dilemma: Definition and examples.

✓ Severe uncertainty:

- The idea of an info-gap.
- Shackle-Popper indeterminism.

Info-gap robust satisficing:

Resolving the dilemma.

Example: Monetary policy selection.

Example: The innovation dilemma of rural poverty.

Two questions for decision makers:

- 1. What are our goals?
- 2. How much error/surprise can we tolerate?

Two questions for decision makers:

- 1. What are our goals?
- 2. How much error/surprise can we tolerate?

1. Satisficing: Achieving critical outcomes.

- Essential goals.
- Worst acceptable outcomes.
- Modest or ambitious.

Two questions for decision makers:

- 1. What are our goals?
- 2. How much error/surprise can we tolerate?

1. Satisficing: Achieving critical outcomes.

2. Robustness:

- Immunity to ignorance.
- Greatest tolerable error or surprise.

Two questions for decision makers:

- 1. What are our goals?
- 2. How much error/surprise can we tolerate?
- **1. Satisficing: Achieving critical outcomes.**
- 2. Robustness: Greatest tolerable error.

Optimize robustness; satisfice goals: Procedural (not substantive) optimization. Don't try to optimize the outcome.

Outline

✓ Innovation dilemma: Definition and examples.

✓ Severe uncertainty:

- The idea of an info-gap.
- Shackle-Popper indeterminism.

✓ Info-gap robust satisficing:

Resolving the dilemma.

Example: Monetary policy selection.

Example: The innovation dilemma of rural poverty.

Collaborators:

- Maria Demertzis.
- Jan Willem Van den End.

Model of economic dynamics, M:

- Inflation gap, π_t .
- Output gap, y_t .
- Other variables.
- Loss function $L(\pi_t, y_t)$.
- Policy rules.

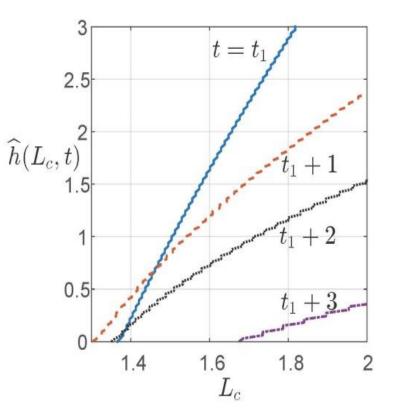
Uncertainties:

- Model coefficients, c.
- Shock amplitudes, ε_t .
- Shock times, t_s.

Info-gap model of uncertainty, U(h):

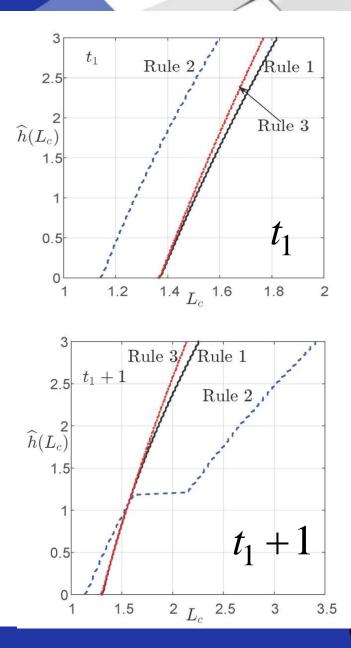
- Unbounded family of nested sets of c_t , ε_t , t_s .
- No known worst case. Unbounded horizon of uncertainty.
- No probabilistic information.

Robustness combines:


- **System model** of economic dynamics, *M*.
- Performance requirement: loss, L, acceptably small.
- Uncertainty model, U(h).

Robustness. Maximum tolerable uncertainty: Maximum horizon of uncertainty, *h*, such that Performance requirement on *L* satisfied by System model *M* for all realizations in Uncertainty model *U(h)*.

Robustness curve:


- Performance requirement: Horizontal axis.
- Robustness: vertical axis.
- Trade off (pessimist's thm): Robustness vs performance.
- Zeroing:

No robustness at predicted outcome.

Robustness: 3 policy rules.

- Trade off, zeroing: all 3 rules.
- **Robust dominance,** rule 2, at t_1 .
- Preference reversal at $t_1 + 1$.
- Innovation dilemma at $t_1 + 1$.
- Resolution:
 - Maximize robustness.
 - Satisfice loss.

Innovation dilemma of poverty

Rural poverty:

- Low agricultural productivity.
- High mortality/morbidity.
- Resentment and suspicion of government and NGOs.
- Local barons or warlords.

Innovative hi-tech proposal:

- New strains of plants.
- Better irrigation.
- Better fertilizers.
- Mechanization of field work.

Innovation dilemma of poverty

Potential gains from innovation:

- Higher agricultural productivity.
- Higher standard of living.
- Less arduous field work.

Potential losses from innovation:

- Failure of innovative crops, causing starvation.
- Social reorganization and upheaval.
- Rapid population growth, canceling gains (Malthus).

Dilemma: Innovation could be much better, or much worse. How to choose?

Innovation dilemma of poverty

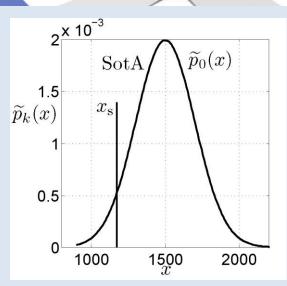
Basic questions:

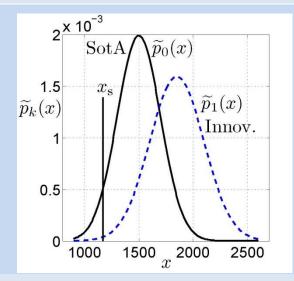
- What are the **goals**?
- What is our **knowledge**?
- What are the **uncertainties**?

Robustness of an option:

Maximum tolerable uncertainty.

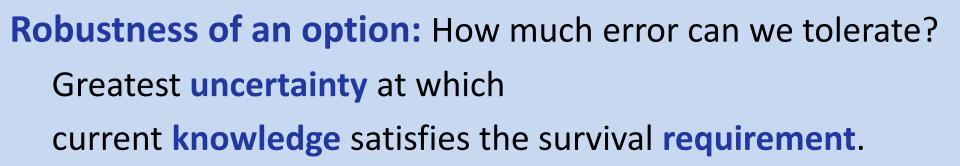
The knowledge-bifurcation. Is your knowledge:


- Quantitative: data and equations?
- Qualitative: mainly insight and understanding, (perhaps with some numbers)?


We will consider both situations.

Field study of traditional State of the Art:

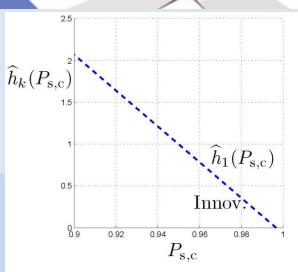
- Survival requirement: 1171 kg wheat/ha.
- Probability dist. of productivity well known.
- Survival probability: 0.95 (known).
- Survival catastrophe return-time:
 20 years (known).
- Knowledge about innovative option:
- Probability distribution of productivity estimated, uncertain.
- Survival probability: 0.9967 (estimate).
- Survival catastrophe return-time: 303 years (estimate).

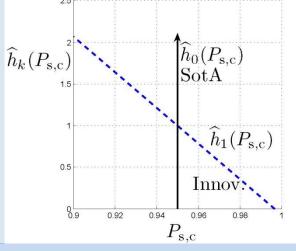

The choice is clear?

Uncertainty of innovative option:

- Prob. distribution of productivity: estimated.
- True tail (rare but bad): highly uncertain.
- Survival probability & catastrophe return-time may be much worse than for SotA.

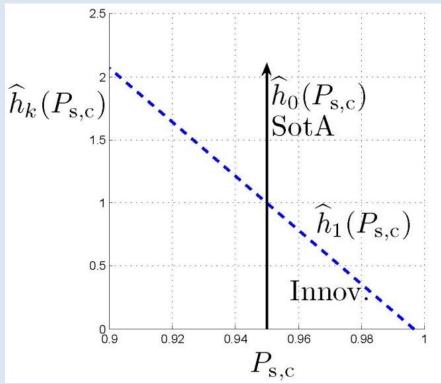
Robust prioritization: Innovation or SotA?


- Maximize robustness, satisfice outcome.
- Don't try to optimize the outcome.


- **Robustness of innovative option:**
- Pessimist's thm. Trade off:
- Zeroing: No robustness at
- estimated survival probability.

Robustness of SotA:

- Unbounded for survival probability up to 0.95.
- Zero for survival probability above 0.95.


Decision: Choose by robustly satisfying the requirement.

Summary of quantitative analysis of innov. dilemma:

- Zeroing: no robustness at estimated survival prob.
- Optimizer's fallacy: Prioritize by estimates.
- Trade off: robustness vs survival probability.
- Preference reversal: Resolution of dilemma.

Now for the hard part:

Qualitative analysis of robustness.

Robustness:

- We can't evaluate it quantitatively.
- Assess it qualitatively with **proxies for robustness**:
 - Resilience: rapid recovery of critical functions.
 - Redundancy: multiple alternative solutions.
 - Flexibility: rapid modification of tools and methods.
 - Adaptiveness: adjust goals and methods online.
 - Comprehensiveness: interdisciplinary system-wide coherence.

Basic questions:

- What are the **goals**?
- What is our **knowledge**?
- What are the **uncertainties**?

Bernard Amadei: girl water carriers.

• **Goal**: more potable water.

- Knowledge: Abundant fuel. Pump tech. Local culture.
- Uncertainties:
 - Long-term maintenance? Catastrophe if not.
 - Stable fuel supply?
 - Social response: what happens to the girls?

Robust solution:

- Satisfice the goal. Don't try to maximize. (Exploit trade off)
- Co-design: local involvement in all stages (comprehensive).
- Train locals in pump maintenance (resilience, flexibility).
- Transition period of dual supply (redundancy).
- Long-term contact for emergency support (adaptiveness).
- Education for girls (and boys) (comprehensiveness).
- Quantitative analysis where possible.

Methodological re-cap:

- Trade off: higher ambition = lower robustness.
 Ambitions: Yes. Wishful thinking: No.
- Zeroing: Best-estimated outcomes have no robustness.
- Satisfice your goals. Optimize your robustness.
 Don't try to maximize the outcome.
- Preference reversal: sub-optimal may be more robust.
 Wood burning steam pump more robust to uncertainty than solar electric technology.

Last words

Innovation dilemma: New is promising but more uncertain.

Severe uncertainty:

- The idea of an info-gap.
- Shackle-Popper indeterminism.

Info-gap robust satisficing:

Satisfice the goals, optimize the robustness.

Example: Monetary policy selection.

Example: The innovation dilemma of rural poverty.

Questions?