

Figure 4: Robustness curves for $\lambda = 3$ and r = 1, 2, ..., 5. $s_1 = s_2 = 1$.

¶ Numerical example, fig. 4.

- The best (but highly unreliable) estimate of the number of clients is $\tilde{\lambda} = 3$.
- Fig. 4 shows robustness curves for server-capacities r = 1, 2, ..., 5.

• Recall the loss function, $\pi_{\ell}(r, \lambda)$, which is the probability of un-served clients or un-used server capacity.

• Consider the loss function at the estimated number of clients, $\pi_{\ell}(r, \tilde{\lambda})$, which is the *x*-intersect in fig. 4, shown in table 1:

r	$M(0) = \pi_{\ell}(r, \tilde{\lambda})$
Server	Nominal
capacity	loss function
1	0.85
2	0.78
3	0.78
4	0.83
5	0.90

Table 1: Nominal loss function for different server capacities.

• We want $\pi_{\ell}(r, \tilde{\lambda})$ small, so, based on the best-estimate of the client-arrival rate, $\tilde{\lambda}$, our preferences on values of r are:

$$3 \sim_{n} 2 \succ_{n} 4 \succ_{n} 1 \succ_{n} 5 \tag{72}$$

The subscript 'n' indicates that these are 'nominal' preferences.