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¶ Sometimes one has both probabilistic and info-gap information about the uncertainties.

¶ Neither is sufficient to fully characterize the uncertainty.

¶ We will consider three situations:
• Info-gap uncertainty and the Poisson process.
• Uncertain probability distributions embedded in an info-gap model.
• Probabilistic info-gap horizon of uncertainty.
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1 Info-Gap Uncertainty in a Poisson Process

1.1 Poisson and Info-Gap Uncertainties

¶ Many complex events such as earthquakes, currency crashes, or other extreme distur-
bances have two distinct time constants:

1. The events recur infrequently over time.

That is, on the long time scale, θ, they can be thought of as distinct points.

2. The temporal variation during an event is both important and unknown.

That is, on the short time scale, t, they are complex and unknown.

¶ A common and often reliable statistical datum on the long time scale is:
Average rate of recurrence of a rare event over a long duration θ.

¶ The poisson process is a good probabilistic model for long durations if:

1. The occurrence of distinct events is statistically independent.

2. The average number of events per unit of time is constant.

¶ With these two assumptions, the probability of exactly n events in a duration θ is given by
the Poisson distribution:

Pn(θ) =
(λθ)ne−λθ

n!
, n = 0, 1, 2, . . . (1)

¶ This is valid for representing distributions in space as well as in time.

¶ The mean number of events in duration θ is:

E[n(θ)] = λθ (2)

¶ Thus λ = mean number of events per unit time.

¶ An info-gap model is a good representation of the uncertain variation of the temporal
waveform during an event.
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1.2 Shock Loading of a Dynamical System

¶ Dynamical system:
◦ t = short time scale.
◦ xu(t) = state vector.
◦ u(t) = Severe transient load vector.

¶ Damage due to loads:
◦ Severe loads recur infrequently, causing damage.
◦ Damage depends on the short-time-scale dynamics.
◦ Damage accumulates from each event, until the system fails.

¶ System model:
dx

dt
= Ax(t) +Bu(t), x(0) = 0 (3)

A and B are known constant matrices.

¶ Cumulative energy-bound load-uncertainty model:

U(h, ũ) =
{
u(t) :

∫ ∞

0
[u(t)− ũ(t)]T W [u(t)− ũ(t)] dt ≤ h2

}
, h ≥ 0 (4)

W is a known, real, symmetric, positive definite matrix.

¶ Small increment of damage resulting from one event:

δu = γ
[
ψTxu(t)

]µ
(5)

γ and µ are known, positive constants.
ψ is a known projection vector.

¶ Poisson probability, Pn(θ), of n transient events in a long interval of duration θ, eq.(1).
Single known parameter, λ.

¶ Failure occurs if the cumulative damage exceeds ∆c.
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1.3 Robustness Function: I

¶ Failure occurs in n events if the
cumulative damage exceeds the critical value ∆c.

¶ The robustness to n > 0 events, ĥn,
is the greatest value of the uncertainty parameter h
such that failure cannot occur in n events:

ĥn = max

{
h : n max

u∈U(h,ũ)
δu(t) ≤ ∆c

}
(6)

We note that ĥn is meaningful for n > 0. Failure cannot occur if damage-inducing events do
not occur.
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1.4 Maximal Increment of Damage

¶ In order to evaluate the robustness function we must find
the maximum increment of damage in a single event,
up to uncertainty h.

¶ This requires the maximum projected response.

¶ The response to input u(t) is:

xu(t) =
∫ t

0
eA(t−τ)Bu(τ) dτ (7)

¶ The deviation of the projected response is:

ψT [xu(t)− xũ(t)] =
∫ t

0
ψT eA(t−τ)B [u(τ)− ũ(τ)] dτ (8)

=
∫ t

0
ψT eA(t−τ)BW−1/2W 1/2 [u(τ)− ũ(τ)] dτ

(9)

=
∫ t

0
ζT (t− τ)W 1/2 [u(τ)− ũ(τ)] dτ (10)

where we have defined the vector:

ζT (t) = ψT eAtBW−1/2 (11)

¶ The maximum projected response up to uncertainty h is:

max
u∈U(h,ũ)

ψT [xu(t)− xũ(t)] = h

√∫ t

0
ζT (τ)ζ(τ) dτ

︸ ︷︷ ︸
Z(t)

(12)

which defines the known function Z(t).
(Hint: use the Cauchy inequality, and then the Schwarz inequality.)
¶ Now, combining eqs.(5) and (12), the maximum increment of damage in a single transient
event, up to uncertainty h, is:

max
u∈U(h,ũ)

δu(t) = γ
[
ψTxũ(t) + hZ(t)

]µ
(13)
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1.5 Robustness Function: II

¶ Failure occurs in n events if the
cumulative damage exceeds the critical value ∆c.

¶ As explained in section 1.3, the robustness to n > 0 events, ĥn,
is the greatest value of the uncertainty parameter h
such that failure cannot occur in n events:

ĥn = max

{
h : n max

u∈U(h,ũ)
δu(t) ≤ ∆c

}
(14)

We note that ĥn is meaningful for n > 0. Failure cannot occur if damage-inducing events do
not occur.

¶ Equate max cumulative damage to ∆c:

n max
u∈U(h,ũ)

δu(t) = ∆c (15)

Now solve for h to find the robustness to n transients:

ĥn =
(∆c/nγ)

1/µ − ψTxũ(t)

Z(t)
, n = 1, 2, . . . (16)

or ĥn = 0 if this is negative.
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¶ n is a Poisson random variable.
Therefore ĥn is also a Poisson random variable.

¶ Randomization: concise combination of
info-gap and probabilistic information.

ĥ(θ) =
1

1− P0(θ)

∞∑

n=1

ĥnPn(θ) (17)

We are usually interested in long durations θ for which:

P0(θ) = e−λθ ≪ 1 (18)

¶ ĥ(θ) is a decision function, since “bigger is better”.

¶ Let q be the vector of decision variables. We will write ĥ(q,∆c).

¶ The optimal optimal decision vector q̂c(∆c):

q̂c(∆c) = argmax
q∈Q

ĥ(q,∆c) (19)

Q = set of available decisions.

¶ Both robustness functions:
ĥ(q,∆c) and ĥ(q̂c(∆c),∆c),
display the usual trade-off of immunity versus reward.
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✲

✻

0

p(ĥn)

ĥd

failure probability
ĥn

Figure 1: Illustration of failure probability for eq.(20).

¶ Different approach: Optimize probability distribution of ĥn.
◦ Let ĥd be a desired or demanded value of robustness.
◦ Choose q to maximize the probability

of those ĥn(q)’s which exceed the demanded value ĥd:

q̂(ĥd) = argmax
q∈Q

∑

ĥn(q) ≥ ĥd

Pn(θ) (20)

Let us examine the condition:
ĥn(q) ≥ ĥd (21)

From eq.(16) this becomes:

(
∆c

nγ

)1/µ

≥ ψTxũ(t) + ĥdZ(t) (22)

Solving for n:

n ≤
∆c

γ
[
ψTxũ(t) + ĥdZ(t)

]µ (23)

We maximize the probability that condition (21) holds if we choose q to minimize ψTxũ(t) +

ĥdZ(t).
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2 Embedded Probability Densities

¶ We consider the following situation:
◦ u is uncertain.
◦ The uncertainty in u is represented by a pdf p(u).
◦ p(u) is uncertain.
◦ The uncertainty in p(u) is represented by an info-gap model.

2.1 Formulation: Dynamical System

¶ Variables:
◦ u = uncertain input to a system.
◦ xu = response to input u.
◦ p(u) = pdf of u; imperfectly known.
◦ p̃(u) = nominal pdf of u; known.
◦ U(h, p̃), h ≥ 0 : info-gap model for uncertainty of p.

¶ Failure occurs if:
f(xu) > xc (24)

¶ For any pdf p(u), the probability of failure is:

Pf(p) = Prob (f(xu) > xc | p) (25)

=
∫

f(xu)>xc

p(u) du (26)

¶ We want:
Pf(p) ≤ Pc (27)

¶ We cannot reliably calculate Pf(p) because p is uncertain.
¶ We can calculate the robustness, to uncertainty in p(u), of the failure probability:

ĥ(Pc) = max

{
h : max

p∈U(h,p̃)
Pf(p) ≤ Pc

}
(28)

This is an ordinary robustness function for uncertainty in p.
If ĥ(Pc) is large then we have confidence, despite the info-gaps in the pdf, that the failure
probability will not exceed Pc.
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2.2 Example: 1-D Dynamic System

¶ 1-D system:
dx

dt
= Ax(t) +Bu(t), x(0) = 0 (29)

A and B are known constant scalars.

¶ Variables:
◦ u = input.

= constant random variable in [0, T ]. Zero elsewhere.
◦ p(u) = pdf of u.
◦ p̃(u) = best-estimate of the probability density of u.

= N (0, σ2).

¶ Uncertainty in p(u):
◦ Evidence for p̃ is quite good up to about k standard deviations.
◦ Beyond kσ the fractional deviation of p from p̃ varies.
◦ An info-gap model for uncertainty in p is:

U(h, p̃) =
{
p(u) : p(u) ≥ 0,

∫
p(u) du = 1,

|p(u)− p̃(u)| ≤ hp̃(u) if |u| ≥ kσ

p(u) = cp̃(u) if |u| < kσ
}
, h ≥ 0 (30)

c is a normalization constant for each density p(u).

¶ System response at end of nominal load:

xu(T ) =
uB

(
eAT − 1

)

A
(31)

¶ Failure criterion:
|xu(T )| > xc (32)

¶ Probability of failure, given density p(u), is:

Pf(p) = Prob ( |xu(T )| > xc | p) (33)

= Prob (|u| > ηxc) (34)

where we have defined:
η =

A

B (eAT − 1)
(35)

¶ As before, we desire:
Pf(p) ≤ Pc (36)
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¶ Simplifying assumption:
ηxc ≥ kσ (37)

¶ To evaluate the robustness function we must find maximum failure probability.

¶ The maximum on the upper tail is:

max
p∈U(h,p̃)

∫ ∞

ηxc

p(u) du =
∫ ∞

ηxc

p̃(u)(1 + h) du (38)

= (1 + h)
[
1− Φ

(
ηxc
σ

)]
(39)

Φ(·) is the standard normal probability distribution function.

¶ The maximum on the lower tail is the same, so:

max
p∈U(h,p̃)

Pf(p) = 2(1 + h)
[
1− Φ

(
ηxc
σ

)]
(40)

¶ We have assumed that h is small enough so that this is no greater than one. This is
assured, for some non-negative h, if the nominal density, p̃(u), entails acceptable probability
of failure, which requires that:

2
[
1− Φ

(
ηxc
σ

)]
≤ Pc (41)

¶ To find ĥ from eq.(28) on p.10, equate eq.(40) to Pc, and solve for h:

ĥ(Pc) =
Pc

2
[
1− Φ

(
ηxc
σ

)] − 1 (42)
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2.3 Example: Static Poisson Queuing I

¶ Queuing and timing problems:
• Match server rate to client-arrival rate.
◦ Inventory problems: keep stock available and fresh.
◦ Digital communications synchronization.

• Tracking random events.

¶ The System:
• Server able to handle r clients per day.
• Clients accumulate during the night; no new clients arrive during working hours.
• n = number of clients waiting in morning.
• Clients arrive randomly and independently with constant mean rate, so n is a Poisson

random variable:

Pn(λ) =
e−λλn

n!
, n = 0, 1, . . . (43)

¶ Uncertainty:
• λ = average number of clients per day. Non-negative
• λ̃ = best estimate of λ.
• λ erratically variable, and represented by fractional-error info-gap model:

Approximately: ∣∣∣∣∣
λ− λ̃

λ̃

∣∣∣∣∣ ≤ h, h ≥ 0 (44)

More precisely:

U(h, λ̃) =
{
λ : max[0, (1− h)λ̃] ≤ λ ≤ (1 + h)λ̃

}
, h ≥ 0 (45)

¶ The Question:
• Manager does not want:
◦ Clients who are not handled on the day of arrival: r too small.
◦ Unused client-handling capability: r too large.

• What value of r should be adopted?
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¶ Loss function:
• Probability of Not Serving s2 or more clients is:

πns(r, λ) =
∞∑

n=r+s2

Pn(λ) (46)

• Probability of Unused Capacity for handling s1 or more clients is:

πuc(r, λ) =
r−s1∑

n=0

Pn(λ) (47)

• The loss function is:

πℓ(r, λ) = πuc(r, λ) + πns(r, λ) (48)

=
r−s1∑

n=0

Pn(λ) +
∞∑

n=r+s2

Pn(λ) (49)

= 1−
r+s2−1∑

n=r−s1+1

Pn(λ) (50)

= 1− e−λ
r+s2−1∑

n=r−s1+1

λn

n!
(51)

• For instance, if s1 = s2 = 1:

πℓ(r, λ) = 1− Pr(λ) = 1−
e−λλr

r!
(52)

¶ Performance requirement:

πℓ(r, λ) ≤ ε (53)

¶ Robustness of handling-capacity r to uncertainty in arrival rate λ:

ĥ(r, ε) = max

{
h :

(
max

λ∈U(h,λ̃)

πℓ(r, λ)

)
≤ ε

}
(54)



HYBRID UNCERTAINTIES 15

¶ Inner maximum in eq.(54):

M(h) = max
λ∈U(h,λ̃)

πℓ(r, λ) (55)

•M(h) increases as h increases because U(h, λ̃) are nested sets:

dM(h)

dh
≥ 0 (56)

• ĥ(r, ε) is greatest h at which:
M(h) ≤ ε (57)

• Thus ĥ(r, ε) is greatest solution for h of (see fig. 2):

M(h) = ε (58)

• In other words, M(h) is the inverse of ĥ(r, ε):

M(h) = ε if and only if ĥ(r, ε) = h (59)

✲

✻

ε

ĥ(r, ε)
h

M(h)

0

1

1
ε⋆ ✲

✻
πℓ(r, λ)

λr

Figure 2: Illustration of
the calculation of robust-
ness.

Figure 3: Schematic illus-
tration of πℓ(r, λ).

¶ Evaluating M(h):
• Consider s1 = s2 = 1, so πℓ(r, λ) in eq.(52), p.14, is:

πℓ(r, λ) = 1−
e−λλr

r!
(60)

• Note, as illustrated schematically in fig. 3, that:

∂πℓ
∂λ

=
e−λλr−1

r!
(λ− r) (61)

• Hence, M(h) is obtained from eq.(60) with one or the other of the extreme λ values at
horizon of uncertainty h. Denote these extreme values:

λ+ = (1 + h)λ̃ (62)

λ− = max[0, (1− h)λ̃] (63)

• Hence:

M(h) = max [πℓ(r, λ−), πℓ(r, λ+)] (64)
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¶ Nominal loss function for s1 = s2 = 1, eq.(60), p.15:

ε⋆ = πℓ(r, λ̃) = 1−
e−λ̃λ̃

r

r!
(65)

This estimate of the loss function is based on the best estimate of the client-arrival rate,
λ̃.
• Note that:

M(0) = ε⋆ (66)

• Thus, as in fig. 2, p.15:
ĥ(r, ε⋆) = 0 (67)

◦ The best estimate of the loss function has zero robustness.
◦ Only worse (larger) loss has positive robustness, as in fig. 2:

ε > ε′ =⇒ ĥ(r, ε) ≥ ĥ(r, ε′) (68)

¶ Optimizing the nominal loss function.
• Optimal server size:

r⋆ = argmin
r
πℓ(r, λ̃) (69)

• Anticipated loss function:
εopt = πℓ(r

⋆, λ̃) (70)

• Robustness vanishes as in eq.(67):

ĥ(r⋆, εopt) = 0 (71)
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Figure 4: Robustness curves for λ̃ = 3 and r = 1, 2, . . . , 5. s1 = s2 = 1.

¶ Numerical example, fig. 4.
• The best (but highly unreliable) estimate of the number of clients is λ̃ = 3.
• Fig. 4 shows robustness curves for server-capacities r = 1, 2, . . . , 5.
• Recall the loss function, πℓ(r, λ), which is the probability of un-served clients or un-used

server capacity.
• Consider the loss function at the estimated number of clients, πℓ(r, λ̃), which is the

x-intersect in fig. 4, shown in table 1:

r M(0) = πℓ(r, λ̃)
Server Nominal

capacity loss function
1 0.85
2 0.78
3 0.78
4 0.83
5 0.90

Table 1: Nominal loss function for different server capacities.

• We want πℓ(r, λ̃) small, so, based on the best-estimate of the client-arrival rate, λ̃, our
preferences on values of r are:

3 ∼n 2 ≻n 4 ≻n 1 ≻n 5 (72)

The subscript ‘n’ indicates that these are ‘nominal’ preferences.



HYBRID UNCERTAINTIES 18

• Now consider the preferences based on the robustness curves, ≻r.
◦ An r-value whose curve is further to the right has greater robustness.
◦ The following strict dominances are observed:

3 ≻r 4 ≻r 5 (73)

2 ≻r 1 ≻r 5 (74)

◦ The robust-satisficing preferences in eqs.(73) and (74) are
consistent with, but weaker than, the nominal preferences in eq.(72).

• In fig. 4 we see 3 crossing robustness curves.
• Crossing of robustness curves implies preference reversal.
• Comparing nominal and robust-satisficing preferences, the differences are shown in

table 2:

≻n ≻r

Nominal robust-satisficing
preference preference

3 ∼n 2 3 crosses 2
3 ≻n 1 3 crosses 1
4 ≻n 1 4 crosses 1

Table 2: Nominal loss function for different server capacities.

• For instance, compare r = 2 and r = 3 in fig. 4.
◦ For ε < 0.9: ĥ(3, ε) > ĥ(2, ε) =⇒ 3 ≻r 2.
◦ For ε > 0.9: ĥ(2, ε) > ĥ(3, ε) =⇒ 2 ≻r 3.
◦ Nominally: 3 ∼n 2.

• For instance, compare r = 1 and r = 4 in fig. 4.
◦ For ε < 0.97: ĥ(4, ε) > ĥ(1, ε) =⇒ 4 ≻r 1.
◦ For ε > 0.97: ĥ(1, ε) > ĥ(4, ε) =⇒ 1 ≻r 4.
◦ Nominally: 4 ∼n 1.
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2.4 Example: Static Poisson Queuing II

¶ Modify example of section 2.3: different uncertainty in probabilities.

¶ Uncertain probability distribution:
• P̃ n, n = 0, 1, . . . is the best estimated distribution of number of clients accumulated

during the night.
• P̃ n may be Poisson with specified average rate λ̃.
• Pn, n = 0, 1, . . . is the unknown actual distribution of number of clients accumulated

during the night.
• The info-gap model for Pn is:

U(h, P̃ ) =

{
Pn = P̃ n + un : max[−P̃ n, −hP̃ n] ≤ un ≤ hP̃ n,

∞∑

n=0

un = 0

}
, h ≥ 0 (75)

¶ Loss function:
• Probability of Not Serving s2 or more clients is:

πns(r, P ) =
∞∑

n=r+s2

(P̃ n + un) (76)

• Probability of Unused Capacity for handling s1 or more clients is:

πuc(r, P ) =
r−s1∑

n=0

(P̃ n + un) (77)

• The loss function is:

πℓ(r, P ) = πuc(r, P ) + πns(r, P ) (78)

=
r−s1∑

n=0

(P̃ n + un) +
∞∑

n=r+s2

(P̃ n + un) (79)

= 1−
r+s2−1∑

n=r−s1+1

(P̃ n + un) (80)

• For instance, if s1 = s2 = 1:

πℓ(r, P ) = 1− P̃ r − ur (81)
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¶ Performance requirement, as before in eq.(53), p.14:

πℓ(r, P ) ≤ ε (82)

¶ Robustness of handling-capacity r to uncertainty in arrival rate λ, as in eq.(54), p.14:

ĥ(r, ε) = max

{
h :

(
max

P∈U(h,P̃ )
πℓ(r, P )

)
≤ ε

}
(83)

¶ Inner maximum in eq.(83):
• Suppose h ≤ 1 and P̃ r ≤ 0.5.
• Then inner maximum occurs for:

ur = −hP̃ r (84)

• Denote inner maximum as M(h), as in eq.(55), p.15.
• Thus, from eq.(81) on p.19:

M(h) = 1− P̃ r + hP̃ r = ε (85)

• Robustness is:

ĥ(r, ε) =





0 if ε− 1 + P̃ r < 0

ε− 1 + P̃ r

P̃ r

else
(86)

¶ Trade-off of robustness vs. performance, like eq.(68), p.16:

ε > ε′ =⇒ ĥ(r, ε) ≥ ĥ(r, ε′) (87)

¶ No robustness of estimated loss, like eq.(67), p.16:

ε⋆ = πℓ(r, P̃ ) = 1− P̃ r =⇒ ĥ(r, ε⋆) = 0 (88)
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¶ Robustness function, eq.(86), p.20, and fig. 5:
• ĥ(r, ε) vs. ε is straight increasing line.
• Two points on the curve are:
ĥ(r, 1− P̃ r) = 0.
ĥ(r, 1) = 1.

• Hence:
◦ Robustness curves cross only at maximal robustness.
◦ Nominal preference agrees with robust-satisficing preference.
◦ ĥ(r, ε) quantifies reliability of sub-optimal performance (ε > ε⋆).

✲

✻

1−P̃r 1−P̃
r
′

ε

ĥ(r, ε)

1

10

Figure 5: Illustration of robustness curves, eq.(86).
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2.5 Example: Dynamic Queuing; Birth and Death Process

¶ Formulation
• Server acts while queue is active.
• n = length of queue of clients waiting for service.
• n can be:
◦ positive, meaning that clients are waiting for service.
◦ negative, meaning that the server is idle.
◦ Thus n can be any integer from −∞ to +∞.
◦ Note approximation at both extremes.

• Pn(t) = probability that the length is n at time t.

¶ Birth and death process: differential equations for Pn(t).
• Client arrivals and “departures” are statistically independent.
• λdt = probability of 1 client added during dt.
λ is uncertain.

• µdt = probability of 1 client removed during dt.
µ is under our control: client-processing rate of server.

• 1− λdt− µdt = probability of 0 clients added or removed during dt.
• Probability-balance equation for Pn(t):

Pn(t+ dt) = Pn(t)(1− λdt− µdt) + Pn−1(t)λdt+ Pn+1(t)µdt+O(dt2) + · · · (89)

• Re-arrange, divide by dt, take limit dt→ 0:

dPn(t)

dt
= λPn−1(t)− λPn(t) + µPn+1(t)− µPn(t), n ∈ (−∞, +∞) (90)

• Initial queue size, at t = 0, is n0, so initial conditions for eqs.(90) are:

Pn(0) = δn0,n (91)
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¶ Moments of n(t):

E[nk(t)] =
∞∑

n=−∞

nkPn(t) (92)

In particular:

n(t) = E[n(t)] =
∞∑

n=−∞

nPn(t) (93)

¶ Moment generating function:
• Definition:

G(z, t) =
∑

n

znPn(t) (94)

• Derivative:
∂G(z, t)

∂z
=
∑

n

nzn−1Pn(t) (95)

• Mean queue size:
∂G(z, t)

∂z

∣∣∣∣∣
z=1

=
∑

n

nPn(t) = E[n(t)] (96)

¶ Deriving G(z, t):
• Multiply eq.(90), p.22, by zn and sum on n over (−∞,+∞):

∑

n

znP ′
n = λ

∑

n

znPn−1 − (λ+ µ)
∑

n

znPn + µ
∑

n

znPn+1 (97)

= λz
∑

n

zn−1Pn−1 − (λ+ µ)
∑

n

znPn +
µ

z

∑

n

zn+1Pn+1 (98)

∂G(z, t)

∂t
= λzG− (λ+ µ)G+

µ

z
G (99)

=
(
λz − (λ+ µ) +

µ

z

)
G (100)

• Initial condition on G(z, t) at t = 0, based on eq.(91), p.22:

G(z, t = 0) = zn0 (101)

• Integrate eq.(100) on t:

G(z, t) = zn0 exp
[(
λz − (λ+ µ) +

µ

z

)
t
]

(102)

¶ Mean queue size:
Use eqs.(96) and (102) to find:

n(t, λ) = (λ− µ)t+ n0 (103)
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¶ Uncertainty in λ:

U(h, λ̃) =
{
λ : max[0, (1− h)λ̃] ≤ λ ≤ (1 + h)λ̃

}
, h ≥ 0 (104)

¶ Performance requirement:
n1 ≤ n(tc) ≤ n2 (105)

• where n1, n2 and tc are specified. Typically, n1 < 0 and n2 > 0.
• tc is a clearing time chosen by the designer.
• Denote the performance specification s = (n1, n2).
• Denote the design variables q = (µ, tc).

¶ Robustness with design variables q and specifications s:

ĥ(q, s) = max

{
h :

(
max

λ∈U(h,λ̃)

n(tc, λ)

)
≤ n2 and

(
min

λ∈U(h,λ̃)

n(tc, λ)

)
≥ n1

}
(106)

¶ Sub-problem robustnesses:

ĥ1(q, s) = max

{
h :

(
min

λ∈U(h,λ̃)

n(tc, λ)

)
≥ n1

}
(107)

ĥ2(q, s) = max

{
h :

(
max

λ∈U(h,λ̃)

n(tc, λ)

)
≤ n2

}
(108)

Since both requirements are necessary:

ĥ(q, s) = min[ĥ1(q, s), ĥ2(q, s)] (109)

¶ Deriving ĥ2:

max
λ∈U(h,λ̃)

[(λ− µ)tc + n0] ≤ n2 =⇒
[
(1 + h)λ̃− µ

]
tc + n0 ≤ n2 (110)

Thus:

ĥ2(q, s) =





n2 − n0

λ̃tc
+ µ
λ̃
− 1 if (λ̃− µ)tc + n0 ≤ n2

0 else
(111)
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¶ Deriving ĥ1:
• The inner minimum in eq.(107) is a decreasing function of h (fig. 6):

min
λ∈U(h,λ̃)

n(tc, λ) =





[
(1− h)λ̃− µ

]
tc + n0 if h ≤ 1

−µtc + n0 else
(112)

✲

✻

min
λ∈U(h,λ̃)

n(tc, λ)

(λ̃−µ)tc+n0

−µtc+n0

1

n1

❄

}
ĥ1 = ∞

ĥ1

✲

0
0 h

Figure 6: Schematic illustration of
the evaluation of ĥ1 from eq.(112).

• Thus:

ĥ1(q, s) =





0 if (λ̃− µ)tc + n0 ≤ n1

1− n1 − n0

λ̃tc
− µ
λ̃

if − µtc + n0 ≤ n1 < (λ̃− µ)tc + n0

∞ if n1 < −µtc + n0

(113)

¶ ĥ(q, s) from combining eqs.(109), (111) and (113).
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¶ Maximal robustness.
• From eq.(109), p.24, we see that the choice of q = (µ, tc) which maximizes ĥ(q, s) is the

choice which causes:
ĥ1(q, s) = ĥ2(q, s) (114)

• Suppose that n1 and n2 are such that ĥ1(q, s) and ĥ2(q, s) are both positive and finite.
• Then eq.(114) is:

1−
n1 − n0

λ̃tc
−
µ

λ̃
=
n2 − n0

λ̃tc
+
µ

λ̃
− 1 (115)

which implies:

µ = λ̃+
∆

tc
where ∆ = n0 −

n1 + n2

2
(116)

• That is, for any tc, choosing µ according to eq.(116) maximizes ĥ(q, s) for that tc.
• For any tc, the robustness with µ from eq.(116) is:

ĥ(q, s) = ĥ1(q, s) = ĥ2(q, s) =
n2 − n1

2λ̃tc
(117)

provided that n1 and n2 are such that ĥ1(q, s) and ĥ2(q, s) are both positive and finite.
• We see from eq.(117) the following trade-offs:
◦ Robustness increases as acceptable un-used capacity increases (as n1 becomes

more negative):
∂ĥ(q, s)

∂n1
< 0 (118)

◦ Robustness increases as the acceptable # of un-served clients increases:

∂ĥ(q, s)

∂n2
> 0 (119)

◦ Robustness increases as the tolerance-window n2 − n1 increases:

∂ĥ(q, s)

∂(n2 − n1)
> 0 (120)

◦ Robustness increases as clearing time decreases:

∂ĥ(q, s)

∂tc
< 0 (121)
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3 Probabilistic Info-Gap Parameter

¶ Basic idea:
◦ Complex temporal or spatial waveforms are

modelled by an info-gap model, U(h, ũ), h ≥ 0.
◦ The uncertainty parameter h has physical meaning.

E.g. energy of event.
◦ The uncertainty in h is represented by a pdf.

¶ Example:
◦ Dynamic system with uncertain load u ∈ U(h, ũ), h ≥ 0.
◦ Load u causes damage δ(u).
◦ Failure if:

δu(t) ≥ ∆c (122)

¶ Robustness:

ĥ(q,∆c) = max

{
h :

(
max

u∈U(h,ũ)
δu(t)

)
≤ ∆c

}
(123)

q is the vector of decision variables.

¶ Failure can not occur if:
h < ĥ(q,∆c) (124)

¶ Failure need not occur even if:
h ≥ ĥ(q,∆c) (125)

(Load may be propitious.)

¶ We cannot calculate Pf because p(u) is unknown.
¶ We can calculate an upper bound for Pf :

Pf ≤ Prob
[
h ≥ ĥ(q,∆c)

]
= 1− P

[
ĥ(q,∆c)

]
(126)

P (·) is the cumulative probability distribution of h.

¶ Optimal q:
◦ We can seek q to maximize ĥ(q,∆c).
◦ P (h) is a monotonically increasing function.
◦ Thus maximizing ĥ(q,∆c) also maximizes P (ĥ) and minimizes 1− P (ĥ).
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¶ Proof:
∂P (h)/∂h ≥ 0 (127)

and because:
∂P

[
ĥ(q,∆c)

]

∂q
=
∂P

[
ĥ(q,∆c)

]

∂h

∂ĥ(q,∆c)

∂q
(128)

QED

¶ Equivalent definition of the robust optimal action q̂:

ĥ(q̂,∆c) = max
q∈Q

P
[
ĥ(q,∆c)

]
(129)

¶ Likewise, P (·) defines the same preference ordering on q as ĥ(q,∆c):

q ≻ q′ if P
[
ĥ(q,∆c)

]
> P

[
ĥ(q′,∆c)

]
(130)

¶ This provides a probabilistic calibration of the relative merits of the options.


