Lecture Notes on Hybrid Uncertainties

Yakov Ben-Haim
Yitzhak Moda'i Chair in Technology and Economics
Faculty of Mechanical Engineering
Technion — Israel Institute of Technology
Haifa 32000 Israel
http://www.technion.ac.il/yakov
yakov@technion.ac.il

Source material:

- Yakov Ben-Haim, 2006, *Info-Gap Decision Theory: Decisions Under Severe Uncertainty,* 2nd edition, Academic Press, chapter 10.
- Yakov Ben-Haim, 1996, *Robust Reliability in the Mechanical Sciences*, Springer, chap. 8. **A Note to the Student:** These lecture notes are not a substitute for the thorough study of books. These notes are no more than an aid in following the lectures.

Contents

1	Info	-Gap Uncertainty in a Poisson Process	3
	1.1	Poisson and Info-Gap Uncertainties	3
	1.2	Shock Loading of a Dynamical System	4
	1.3	Robustness Function: I	5
	1.4	Maximal Increment of Damage	6
	1.5	Robustness Function: II	7
2	Emb	pedded Probability Densities	10
	2.1	Formulation: Dynamical System	10
	2.2	Example: 1-D Dynamic System	11
	2.3	Example: Static Poisson Queuing I	13
	2.4	Example: Static Poisson Queuing II	19
	2.5	Example: Dynamic Queuing; Birth and Death Process	22
2	Drol	habilistic Info-Gan Parameter	27

⁰\lectures\risk\lectures\hybunc002.tex 8.3.2017 © Yakov Ben-Haim 2017.

- ¶ Sometimes one has both **probabilistic** and **info-gap** information about the uncertainties.
- ¶ Neither is sufficient to fully characterize the uncertainty.
- ¶ We will consider three situations:
 - Info-gap uncertainty and the Poisson process.
 - Uncertain probability distributions embedded in an info-gap model.
 - Probabilistic info-gap horizon of uncertainty.

1 Info-Gap Uncertainty in a Poisson Process

1.1 Poisson and Info-Gap Uncertainties

¶ Many complex events such as earthquakes, currency crashes, or other extreme disturbances have **two distinct time constants**:

- 1. The events recur infrequently over time.
 - That is, on the **long time scale**, θ , they can be thought of as distinct points.
- 2. The temporal variation during an event is both important and unknown.

That is, on the **short time scale**, *t*, they are complex and unknown.

- ¶ A common and often reliable statistical datum on the long time scale is: Average rate of recurrence of a rare event over a long duration θ .
- ¶ The **poisson process** is a good probabilistic model for long durations if:
 - 1. The occurrence of distinct events is statistically independent.
 - 2. The average number of events per unit of time is constant.
- ¶ With these two assumptions, the probability of exactly n events in a duration θ is given by the Poisson distribution:

$$P_n(\theta) = \frac{(\lambda \theta)^n e^{-\lambda \theta}}{n!}, \quad n = 0, 1, 2, \dots$$
 (1)

- ¶ This is valid for representing distributions in space as well as in time.
- ¶ The mean number of events in duration θ is:

$$E[n(\theta)] = \lambda \theta \tag{2}$$

- ¶ Thus $\lambda =$ mean number of events per unit time.
- ¶ An info-gap model is a good representation of the uncertain variation of the temporal waveform during an event.

1.2 Shock Loading of a Dynamical System

- ¶ Dynamical system:
 - \circ t = short time scale.
 - $\circ x_u(t)$ = state vector.
 - $\circ u(t)$ = Severe transient load vector.
- ¶ Damage due to loads:
 - o Severe loads recur infrequently, causing damage.
 - o Damage depends on the short-time-scale dynamics.
 - o Damage accumulates from each event, until the system fails.
- ¶ System model:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = Ax(t) + Bu(t), \quad x(0) = 0 \tag{3}$$

A and B are known constant matrices.

¶ Cumulative energy-bound load-uncertainty model:

$$\mathcal{U}(h,\widetilde{u}) = \left\{ u(t) : \int_0^\infty \left[u(t) - \widetilde{u}(t) \right]^T W \left[u(t) - \widetilde{u}(t) \right] dt \le h^2 \right\}, \quad h \ge 0$$
(4)

W is a known, real, symmetric, positive definite matrix.

¶ Small increment of damage resulting from one event:

$$\delta_u = \gamma \left[\psi^T x_u(t) \right]^{\mu} \tag{5}$$

- γ and μ are known, positive constants.
- ψ is a known projection vector.
- ¶ Poisson probability, $P_n(\theta)$, of n transient events in a long interval of duration θ , eq.(1). Single known parameter, λ .
- \P Failure occurs if the **cumulative damage** exceeds Δ_c .

1.3 Robustness Function: I

- \P Failure occurs in n events if the cumulative damage exceeds the critical value $\Delta_{\rm c}.$
- \P The robustness to n>0 events, \widehat{h}_n , is the greatest value of the uncertainty parameter h such that failure cannot occur in n events:

$$\hat{h}_n = \max \left\{ h: n \max_{u \in \mathcal{U}(h, \widetilde{u})} \delta_u(t) \le \Delta_c \right\}$$
 (6)

We note that \hat{h}_n is meaningful for n>0. Failure cannot occur if damage-inducing events do not occur.

1.4 Maximal Increment of Damage

- ¶ In order to evaluate the robustness function we must find the maximum increment of damage in a single event, up to uncertainty h.
- ¶ This requires the maximum projected response.
- ¶ The response to input u(t) is:

$$x_u(t) = \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau$$
 (7)

¶ The deviation of the projected response is:

$$\psi^{T} [x_{u}(t) - x_{\widetilde{u}}(t)] = \int_{0}^{t} \psi^{T} e^{A(t-\tau)} B [u(\tau) - \widetilde{u}(\tau)] d\tau$$

$$= \int_{0}^{t} \psi^{T} e^{A(t-\tau)} B W^{-1/2} W^{1/2} [u(\tau) - \widetilde{u}(\tau)] d\tau$$

$$= \int_{0}^{t} \zeta^{T} (t - \tau) W^{1/2} [u(\tau) - \widetilde{u}(\tau)] d\tau$$
(9)
$$= \int_{0}^{t} \zeta^{T} (t - \tau) W^{1/2} [u(\tau) - \widetilde{u}(\tau)] d\tau$$
(10)

where we have defined the vector:

$$\zeta^T(t) = \psi^T e^{At} B W^{-1/2} \tag{11}$$

¶ The maximum projected response up to uncertainty h is:

$$\max_{u \in \mathcal{U}(h,\widetilde{u})} \psi^T \left[x_u(t) - x_{\widetilde{u}}(t) \right] = h \underbrace{\sqrt{\int_0^t \zeta^T(\tau)\zeta(\tau) \,\mathrm{d}\tau}}_{Z(t)} \tag{12}$$

which defines the known function Z(t).

(Hint: use the Cauchy inequality, and then the Schwarz inequality.)

¶ Now, combining eqs.(5) and (12), the maximum increment of damage in a single transient event, up to uncertainty h, is:

$$\max_{u \in \mathcal{U}(h,\widetilde{u})} \delta_u(t) = \gamma \left[\psi^T x_{\widetilde{u}}(t) + hZ(t) \right]^{\mu}$$
(13)

1.5 Robustness Function: II

- ¶ Failure occurs in n events if the cumulative damage exceeds the critical value Δ_c .
- ¶ As explained in section 1.3, the robustness to n > 0 events, \hat{h}_n , is the greatest value of the uncertainty parameter h such that failure cannot occur in n events:

$$\hat{h}_n = \max \left\{ h: n \max_{u \in \mathcal{U}(h, \widetilde{u})} \delta_u(t) \le \Delta_c \right\}$$
 (14)

We note that \hat{h}_n is meaningful for n > 0. Failure cannot occur if damage-inducing events do not occur.

¶ Equate max cumulative damage to Δ_c :

$$n \max_{u \in \mathcal{U}(h,\widetilde{u})} \delta_u(t) = \Delta_c \tag{15}$$

Now solve for h to find the robustness to n transients:

$$\hat{h}_n = \frac{(\Delta_c/n\gamma)^{1/\mu} - \psi^T x_{\widetilde{u}}(t)}{Z(t)}, \quad n = 1, 2, \dots$$
 (16)

or $\hat{h}_n = 0$ if this is negative.

- \P n is a Poisson random variable. Therefore \widehat{h}_n is also a Poisson random variable.
- ¶ Randomization: concise combination of info-gap and probabilistic information.

$$\widehat{h}(\theta) = \frac{1}{1 - P_0(\theta)} \sum_{n=1}^{\infty} \widehat{h}_n P_n(\theta)$$
(17)

We are usually interested in long durations θ for which:

$$P_0(\theta) = e^{-\lambda \theta} \ll 1 \tag{18}$$

- $\P \ \widehat{h}(\theta)$ is a decision function, since "bigger is better".
- \P Let q be the vector of decision variables. We will write $\widehat{h}(q, \Delta_{\rm c})$.
- \P The optimal optimal decision vector $\widehat{q}_{c}(\Delta_{c})$:

$$\widehat{q}_{c}(\Delta_{c}) = \arg \max_{q \in \mathcal{Q}} \widehat{h}(q, \Delta_{c})$$
 (19)

Q = set of available decisions.

¶ Both robustness functions:

$$\widehat{h}(q,\Delta_{\rm c})$$
 and $\widehat{h}(\widehat{q}_{\rm c}(\Delta_{\rm c}),\Delta_{\rm c})$,

display the usual trade-off of immunity versus reward.

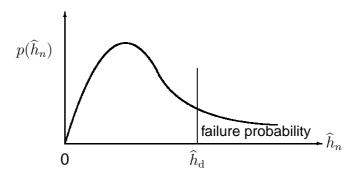


Figure 1: Illustration of failure probability for eq.(20).

- \P Different approach: Optimize probability distribution of \widehat{h}_n .
 - \circ Let \widehat{h}_{d} be a desired or demanded value of robustness.
 - \circ Choose q to maximize the probability of those $\widehat{h}_n(q)$'s which exceed the demanded value $\widehat{h}_{\rm d}$:

$$\widehat{q}(\widehat{h}_{d}) = \arg \max_{q \in \mathcal{Q}} \sum_{\widehat{h}_{d}} P_{n}(\theta)$$

$$(20)$$

Let us examine the condition:

$$\hat{h}_n(q) \ge \hat{h}_{\rm d} \tag{21}$$

From eq.(16) this becomes:

$$\left(\frac{\Delta_{\rm c}}{n\gamma}\right)^{1/\mu} \ge \psi^T x_{\widetilde{u}}(t) + \hat{h}_{\rm d} Z(t) \tag{22}$$

Solving for n:

$$n \le \frac{\Delta_{\rm c}}{\gamma \left[\psi^T x_{\widetilde{u}}(t) + \hat{h}_{\rm d} Z(t) \right]^{\mu}} \tag{23}$$

We maximize the probability that condition (21) holds if we choose q to minimize $\psi^T x_{\widetilde{u}}(t) + \widehat{h}_{\rm d} Z(t)$.

2 Embedded Probability Densities

- ¶ We consider the following situation:
 - $\circ u$ is uncertain.
 - \circ The uncertainty in u is represented by a pdf p(u).
 - $\circ p(u)$ is uncertain.
 - \circ The uncertainty in p(u) is represented by an info-gap model.

2.1 Formulation: Dynamical System

- ¶ Variables:
 - $\circ u$ = uncertain input to a system.
 - $\circ x_u$ = response to input u.
 - $\circ p(u) = pdf of u$; imperfectly known.
 - $\circ \widetilde{p}(u) = \text{nominal pdf of } u; \text{known.}$
 - $\circ \mathcal{U}(h, \widetilde{p}), h \ge 0$: info-gap model for uncertainty of p.
- ¶ Failure occurs if:

$$f(x_u) > x_c \tag{24}$$

 \P For any pdf p(u), the probability of failure is:

$$P_{\rm f}(p) = {\sf Prob}\,(f(x_u) > x_{\rm c} \,|\, p)$$
 (25)

$$= \int_{f(x_u) > x_c} p(u) \, \mathrm{d}u \tag{26}$$

¶ We want:

$$P_{\rm f}(p) \le P_{\rm c} \tag{27}$$

- ¶ We cannot reliably calculate $P_f(p)$ because p is uncertain.
- \P We **can** calculate the robustness, to uncertainty in p(u), of the failure probability:

$$\hat{h}(P_{c}) = \max \left\{ h : \max_{p \in \mathcal{U}(h, \widetilde{p})} P_{f}(p) \le P_{c} \right\}$$
(28)

This is an ordinary robustness function for uncertainty in p.

If $\hat{h}(P_c)$ is large then we have confidence, despite the info-gaps in the pdf, that the failure probability will not exceed P_c .

2.2 Example: 1-D Dynamic System

¶ 1-D system:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = Ax(t) + Bu(t), \quad x(0) = 0$$
(29)

A and B are known constant scalars.

¶ Variables:

 $\circ u = input.$

= constant random variable in [0, T]. Zero elsewhere.

 $\circ p(u) = \mathsf{pdf} \mathsf{of} u.$

 $\circ \ \widetilde{p}(u) = \text{best-estimate of the probability density of } u.$

$$= \mathcal{N}(0, \sigma^2).$$

¶ Uncertainty in p(u):

- \circ Evidence for \tilde{p} is quite good up to about k standard deviations.
- \circ Beyond $k\sigma$ the fractional deviation of p from \widetilde{p} varies.
- \circ An info-gap model for uncertainty in p is:

$$\mathcal{U}(h,\widetilde{p}) = \left\{ p(u) : \quad p(u) \ge 0, \ \int p(u) \, \mathrm{d}u = 1, \\ |p(u) - \widetilde{p}(u)| \le h\widetilde{p}(u) \text{ if } |u| \ge k\sigma \\ p(u) = c\widetilde{p}(u) \text{ if } |u| < k\sigma \right\}, \quad h \ge 0$$
(30)

c is a normalization constant for each density p(u).

¶ System response at end of nominal load:

$$x_u(T) = \frac{uB\left(e^{AT} - 1\right)}{\Delta} \tag{31}$$

¶ Failure criterion:

$$|x_u(T)| > x_c \tag{32}$$

¶ Probability of failure, given density p(u), is:

$$P_{\rm f}(p) = {\sf Prob} (|x_u(T)| > x_{\rm c} | p)$$
 (33)

$$= \operatorname{\mathsf{Prob}}(|u| > \eta x_{\mathsf{c}}) \tag{34}$$

where we have defined:

$$\eta = \frac{A}{B\left(e^{AT} - 1\right)} \tag{35}$$

¶ As before, we desire:

$$P_{\rm f}(p) < P_{\rm c} \tag{36}$$

¶ Simplifying assumption:

$$\eta x_{\rm c} \ge k\sigma$$
(37)

¶ To evaluate the robustness function we must find maximum failure probability.

¶ The maximum on the upper tail is:

$$\max_{p \in \mathcal{U}(h,\widetilde{p})} \int_{\eta x_{c}}^{\infty} p(u) du = \int_{\eta x_{c}}^{\infty} \widetilde{p}(u) (1+h) du$$
(38)

$$= (1+h)\left[1-\Phi\left(\frac{\eta x_{\rm c}}{\sigma}\right)\right] \tag{39}$$

 $\Phi(\cdot)$ is the standard normal probability distribution function.

¶ The maximum on the lower tail is the same, so:

$$\max_{p \in \mathcal{U}(h,\widetilde{p})} P_{f}(p) = 2(1+h) \left[1 - \Phi\left(\frac{\eta x_{c}}{\sigma}\right) \right]$$
 (40)

¶ We have assumed that h is small enough so that this is no greater than one. This is assured, for some non-negative h, if the nominal density, $\tilde{p}(u)$, entails acceptable probability of failure, which requires that:

$$2\left[1 - \Phi\left(\frac{\eta x_{\rm c}}{\sigma}\right)\right] \le P_{\rm c} \tag{41}$$

 \P To find \hat{h} from eq.(28) on p.10, equate eq.(40) to $P_{\rm c}$, and solve for h:

$$\hat{h}(P_{c}) = \frac{P_{c}}{2\left[1 - \Phi\left(\frac{\eta x_{c}}{\sigma}\right)\right]} - 1 \tag{42}$$

2.3 Example: Static Poisson Queuing I

¶ Queuing and timing problems:

- Match server rate to client-arrival rate.
 - o Inventory problems: keep stock available and fresh.
 - o Digital communications synchronization.
- Tracking random events.

¶ The System:

- Server able to handle r clients per day.
- Clients accumulate during the night; no new clients arrive during working hours.
- \bullet n = number of clients waiting in morning.
- ullet Clients arrive randomly and independently with constant mean rate, so n is a Poisson random variable:

$$P_n(\lambda) = \frac{e^{-\lambda} \lambda^n}{n!}, \quad n = 0, 1, \dots$$
 (43)

¶ Uncertainty:

- $\lambda =$ average number of clients per day. Non-negative
- $\tilde{\lambda}$ = best estimate of λ .
- ullet λ erratically variable, and represented by fractional-error info-gap model: Approximately:

$$\left| \frac{\lambda - \widetilde{\lambda}}{\widetilde{\lambda}} \right| \le h, \quad h \ge 0 \tag{44}$$

More precisely:

$$\mathcal{U}(h,\widetilde{\lambda}) = \left\{ \lambda : \max[0, (1-h)\widetilde{\lambda}] \le \lambda \le (1+h)\widetilde{\lambda} \right\}, \quad h \ge 0$$
(45)

¶ The Question:

- Manager does not want:
 - Clients who are not handled on the day of arrival: r too small.
 - \circ Unused client-handling capability: r too large.
- What value of r should be adopted?

¶ Loss function:

ullet Probability of Not Serving s_2 or more clients is:

$$\pi_{\rm ns}(r,\lambda) = \sum_{n=r+s_2}^{\infty} P_n(\lambda) \tag{46}$$

 \bullet Probability of Unused Capacity for handling s_1 or more clients is:

$$\pi_{\rm uc}(r,\lambda) = \sum_{n=0}^{r-s_1} P_n(\lambda) \tag{47}$$

• The loss function is:

$$\pi_{\ell}(r,\lambda) = \pi_{\rm uc}(r,\lambda) + \pi_{\rm ns}(r,\lambda)$$
 (48)

$$= \sum_{n=0}^{r-s_1} P_n(\lambda) + \sum_{n=r+s_2}^{\infty} P_n(\lambda)$$
(49)

$$= 1 - \sum_{n=r-s_1+1}^{r+s_2-1} P_n(\lambda)$$
 (50)

$$= 1 - e^{-\lambda} \sum_{n=r-s_1+1}^{r+s_2-1} \frac{\lambda^n}{n!}$$
 (51)

ullet For instance, if $s_1=s_2=1$:

$$\pi_{\ell}(r,\lambda) = 1 - P_r(\lambda) = 1 - \frac{e^{-\lambda} \lambda^r}{r!}$$
(52)

¶ Performance requirement:

$$\pi_{\ell}(r,\lambda) \le \varepsilon \tag{53}$$

¶ Robustness of handling-capacity r to uncertainty in arrival rate λ :

$$\widehat{h}(r,\varepsilon) = \max \left\{ h : \left(\max_{\lambda \in \mathcal{U}(h,\widetilde{\lambda})} \pi_{\ell}(r,\lambda) \right) \le \varepsilon \right\}$$
 (54)

¶ Inner maximum in eq.(54):

$$M(h) = \max_{\lambda \in \mathcal{U}(h,\widetilde{\lambda})} \pi_{\ell}(r,\lambda) \tag{55}$$

• M(h) increases as h increases because $\mathcal{U}(h, \tilde{\lambda})$ are nested sets:

$$\frac{\mathrm{d}M(h)}{\mathrm{d}h} \ge 0 \tag{56}$$

• $\hat{h}(r,\varepsilon)$ is greatest h at which:

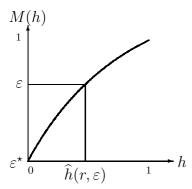
$$M(h) \le \varepsilon \tag{57}$$

• Thus $\hat{h}(r,\varepsilon)$ is greatest solution for h of (see fig. 2):

$$M(h) = \varepsilon \tag{58}$$

ullet In other words, M(h) is the inverse of $\widehat{h}(r,\varepsilon)$:

$$M(h) = \varepsilon$$
 if and only if $\hat{h}(r, \varepsilon) = h$ (59)



 $\pi_{\ell}(r,\lambda)$ r λ

Figure 2: Illustration of the calculation of robustness.

Figure 3: Schematic illustration of $\pi_{\ell}(r, \lambda)$.

¶ Evaluating M(h):

• Consider $s_1=s_2=1$, so $\pi_\ell(r,\lambda)$ in eq.(52), p.14, is:

$$\pi_{\ell}(r,\lambda) = 1 - \frac{e^{-\lambda}\lambda^r}{r!} \tag{60}$$

• Note, as illustrated schematically in fig. 3, that:

$$\frac{\partial \pi_{\ell}}{\partial \lambda} = \frac{e^{-\lambda} \lambda^{r-1}}{r!} (\lambda - r) \tag{61}$$

• Hence, M(h) is obtained from eq.(60) with one or the other of the extreme λ values at horizon of uncertainty h. Denote these extreme values:

$$\lambda_{+} = (1+h)\widetilde{\lambda} \tag{62}$$

$$\lambda_{-} = \max[0, (1-h)\tilde{\lambda}] \tag{63}$$

• Hence:

$$M(h) = \max \left[\pi_{\ell}(r, \lambda_{-}), \ \pi_{\ell}(r, \lambda_{+}) \right]$$
(64)

 \P Nominal loss function for $s_1=s_2=1$, eq.(60), p.15:

$$\varepsilon^* = \pi_\ell(r, \tilde{\lambda}) = 1 - \frac{e^{-\tilde{\lambda}} \tilde{\lambda}^r}{r!}$$
 (65)

This estimate of the loss function is based on the best estimate of the client-arrival rate, $\tilde{\lambda}$.

• Note that:

$$M(0) = \varepsilon^* \tag{66}$$

• Thus, as in fig. 2, p.15:

$$\hat{h}(r, \varepsilon^*) = 0 \tag{67}$$

- o The best estimate of the loss function has zero robustness.
- o Only worse (larger) loss has positive robustness, as in fig. 2:

$$\varepsilon > \varepsilon' \implies \hat{h}(r,\varepsilon) \ge \hat{h}(r,\varepsilon')$$
 (68)

¶ Optimizing the nominal loss function.

• Optimal server size:

$$r^{\star} = \arg\min_{r} \pi_{\ell}(r, \tilde{\lambda})$$
 (69)

• Anticipated loss function:

$$\varepsilon^{\text{opt}} = \pi_{\ell}(r^{\star}, \tilde{\lambda})$$
 (70)

• Robustness vanishes as in eq.(67):

$$\hat{h}(r^{\star}, \varepsilon^{\text{opt}}) = 0 \tag{71}$$

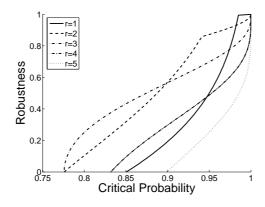


Figure 4: Robustness curves for $\tilde{\lambda} = 3$ and r = 1, 2, ..., 5. $s_1 = s_2 = 1$.

¶ Numerical example, fig. 4.

- The best (but highly unreliable) estimate of the number of clients is $\tilde{\lambda}=3$.
- Fig. 4 shows robustness curves for server-capacities r = 1, 2, ..., 5.
- ullet Recall the loss function, $\pi_\ell(r,\lambda)$, which is the probability of un-served clients or un-used server capacity.
- Consider the loss function at the estimated number of clients, $\pi_{\ell}(r, \tilde{\lambda})$, which is the x-intersect in fig. 4, shown in table 1:

r	$M(0) = \pi_{\ell}(r, \widetilde{\lambda})$
Server	Nominal
capacity	loss function
1	0.85
2	0.78
3	0.78
4	0.83
5	0.90

Table 1: Nominal loss function for different server capacities.

• We want $\pi_{\ell}(r, \widetilde{\lambda})$ small, so, based on the best-estimate of the client-arrival rate, $\widetilde{\lambda}$, our preferences on values of r are:

$$3 \sim_{\mathbf{n}} 2 \succ_{\mathbf{n}} 4 \succ_{\mathbf{n}} 1 \succ_{\mathbf{n}} 5 \tag{72}$$

The subscript 'n' indicates that these are 'nominal' preferences.

- Now consider the preferences based on the robustness curves, ≻_r.
 - \circ An r-value whose curve is further to the right has greater robustness.
 - The following strict dominances are observed:

$$3 \succ_{\mathbf{r}} 4 \succ_{\mathbf{r}} 5 \tag{73}$$

$$2 \succ_{\mathbf{r}} 1 \succ_{\mathbf{r}} 5 \tag{74}$$

- The robust-satisficing preferences in eqs.(73) and (74) are consistent with, but weaker than, the nominal preferences in eq.(72).
- In fig. 4 we see 3 crossing robustness curves.
- Crossing of robustness curves implies preference reversal.
- Comparing nominal and robust-satisficing preferences, the differences are shown in table 2:

\succ_{n}	\succ_{r}
Nominal	robust-satisficing
preference	preference
$3 \sim_{\rm n} 2$	3 crosses 2
$3 \succ_{n} 1$	3 crosses 1
4 ≻ _n 1	4 crosses 1

Table 2: Nominal loss function for different server capacities.

- \bullet For instance, compare r=2 and r=3 in fig. 4.
 - \circ For $\varepsilon < 0.9$: $\hat{h}(3,\varepsilon) > \hat{h}(2,\varepsilon) \implies 3 \succ_{\mathrm{r}} 2$.
 - \circ For $\varepsilon > 0.9$: $\hat{h}(2, \varepsilon) > \hat{h}(3, \varepsilon) \implies 2 \succ_{\mathrm{r}} 3$.
 - \circ Nominally: $3 \sim_n 2$.
- ullet For instance, compare r=1 and r=4 in fig. 4.
 - \circ For $\varepsilon < 0.97$: $\hat{h}(4,\varepsilon) > \hat{h}(1,\varepsilon) \implies 4 \succ_{\rm r} 1$.
 - \circ For $\varepsilon > 0.97$: $\hat{h}(1,\varepsilon) > \hat{h}(4,\varepsilon) \implies 1 \succ_{\rm r} 4$.
 - \circ Nominally: $4 \sim_{\rm n} 1$.

2.4 Example: Static Poisson Queuing II

¶ Modify example of section 2.3: different uncertainty in probabilities.

¶ Uncertain probability distribution:

- \bullet \tilde{P}_n , $n=0,1,\ldots$ is the best estimated distribution of number of clients accumulated during the night.
 - \tilde{P}_n may be Poisson with specified average rate $\tilde{\lambda}$.
- P_n , n = 0, 1, ... is the unknown actual distribution of number of clients accumulated during the night.
 - The info-gap model for P_n is:

$$\mathcal{U}(h, \widetilde{P}) = \left\{ P_n = \widetilde{P}_n + u_n : \max[-\widetilde{P}_n, -h\widetilde{P}_n] \le u_n \le h\widetilde{P}_n, \sum_{n=0}^{\infty} u_n = 0 \right\}, \quad h \ge 0$$
 (75)

¶ Loss function:

• Probability of Not Serving s_2 or more clients is:

$$\pi_{\rm ns}(r,P) = \sum_{n=r+s_2}^{\infty} (\tilde{P}_n + u_n) \tag{76}$$

• Probability of Unused Capacity for handling s_1 or more clients is:

$$\pi_{\rm uc}(r,P) = \sum_{n=0}^{r-s_1} (\tilde{P}_n + u_n)$$
 (77)

• The loss function is:

$$\pi_{\ell}(r, P) = \pi_{\rm uc}(r, P) + \pi_{\rm ns}(r, P)$$
 (78)

$$= \sum_{n=0}^{r-s_1} (\tilde{P}_n + u_n) + \sum_{n=r+s_2}^{\infty} (\tilde{P}_n + u_n)$$
 (79)

$$= 1 - \sum_{n=r-s_1+1}^{r+s_2-1} (\tilde{P}_n + u_n)$$
 (80)

• For instance, if $s_1 = s_2 = 1$:

$$\pi_{\ell}(r,P) = 1 - \tilde{P}_r - u_r \tag{81}$$

Performance requirement, as before in eq.(53), p.14:

$$\pi_{\ell}(r, P) \le \varepsilon \tag{82}$$

¶ Robustness of handling-capacity r to uncertainty in arrival rate λ , as in eq.(54), p.14:

$$\widehat{h}(r,\varepsilon) = \max \left\{ h : \left(\max_{P \in \mathcal{U}(h,\widetilde{P})} \pi_{\ell}(r,P) \right) \le \varepsilon \right\}$$
(83)

¶ Inner maximum in eq.(83):

- Suppose $h \le 1$ and $\widetilde{P}_r \le 0.5$.
- Then inner maximum occurs for:

$$u_r = -h\tilde{P}_r \tag{84}$$

- Denote inner maximum as M(h), as in eq.(55), p.15.
- Thus, from eq.(81) on p.19:

$$M(h) = 1 - \tilde{P}_r + h\tilde{P}_r = \varepsilon \tag{85}$$

Robustness is:

$$\hat{h}(r,\varepsilon) = \begin{cases} 0 & \text{if } \varepsilon - 1 + \tilde{P}_r < 0 \\ \frac{\varepsilon - 1 + \tilde{P}_r}{\tilde{P}_r} & \text{else} \end{cases} \tag{86}$$

¶ Trade-off of robustness vs. performance, like eq.(68), p.16:

$$\varepsilon > \varepsilon' \implies \hat{h}(r, \varepsilon) \ge \hat{h}(r, \varepsilon')$$
 (87)

¶ No robustness of estimated loss, like eq.(67), p.16:

$$\varepsilon^* = \pi_\ell(r, \tilde{P}) = 1 - \tilde{P}_r \implies \hat{h}(r, \varepsilon^*) = 0$$
 (88)

¶ Robustness function, eq.(86), p.20, and fig. 5:

- $\widehat{h}(r,\varepsilon)$ vs. ε is straight increasing line.
- Two points on the curve are:

$$\widehat{h}(r, 1 - \widetilde{P}_r) = 0.$$

$$\widehat{h}(r, 1) = 1.$$

- Hence:
 - o Robustness curves cross only at maximal robustness.
 - o Nominal preference agrees with robust-satisficing preference.
 - $\circ \hat{h}(r,\varepsilon)$ quantifies reliability of sub-optimal performance $(\varepsilon > \varepsilon^*)$.

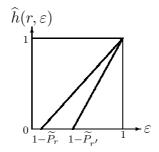


Figure 5: Illustration of robustness curves, eq.(86).

2.5 Example: Dynamic Queuing; Birth and Death Process

¶ Formulation

- Server acts while queue is active.
- n = length of queue of clients waiting for service.
- n can be:
 - o positive, meaning that clients are waiting for service.
 - o negative, meaning that the server is idle.
 - \circ Thus n can be any integer from $-\infty$ to $+\infty$.
 - Note approximation at both extremes.
- $P_n(t) =$ probability that the length is n at time t.

¶ Birth and death process: differential equations for $P_n(t)$.

- Client arrivals and "departures" are statistically independent.
- $\lambda dt =$ probability of 1 client added during dt. λ is uncertain.
- $\mu dt =$ probability of 1 client removed during dt. μ is under our control: client-processing rate of server.
- $1 \lambda dt \mu dt = \text{probability of 0 clients added or removed during } dt$.
- Probability-balance equation for $P_n(t)$:

$$P_n(t + dt) = P_n(t)(1 - \lambda dt - \mu dt) + P_{n-1}(t)\lambda dt + P_{n+1}(t)\mu dt + \mathcal{O}(dt^2) + \cdots$$
(89)

• Re-arrange, divide by dt, take limit $dt \rightarrow 0$:

$$\frac{dP_n(t)}{dt} = \lambda P_{n-1}(t) - \lambda P_n(t) + \mu P_{n+1}(t) - \mu P_n(t), \quad n \in (-\infty, +\infty)$$
 (90)

• Initial queue size, at t = 0, is n_0 , so initial conditions for eqs.(90) are:

$$P_n(0) = \delta_{n_0,n} {(91)}$$

\P Moments of n(t):

$$E[n^k(t)] = \sum_{n=-\infty}^{\infty} n^k P_n(t)$$
(92)

In particular:

$$\overline{n}(t) = E[n(t)] = \sum_{n = -\infty}^{\infty} n P_n(t)$$
(93)

¶ Moment generating function:

• Definition:

$$G(z,t) = \sum_{n} z^{n} P_{n}(t) \tag{94}$$

• Derivative:

$$\frac{\partial G(z,t)}{\partial z} = \sum_{n} nz^{n-1} P_n(t) \tag{95}$$

• Mean queue size:

$$\frac{\partial G(z,t)}{\partial z}\bigg|_{z=1} = \sum_{n} n P_n(t) = \mathrm{E}[n(t)]$$
 (96)

¶ Deriving G(z,t):

• Multiply eq.(90), p.22, by z_n and sum on n over $(-\infty, +\infty)$:

$$\sum_{n} z^{n} P'_{n} = \lambda \sum_{n} z^{n} P_{n-1} - (\lambda + \mu) \sum_{n} z^{n} P_{n} + \mu \sum_{n} z^{n} P_{n+1}$$
(97)

$$= \lambda z \sum_{n} z^{n-1} P_{n-1} - (\lambda + \mu) \sum_{n} z^{n} P_{n} + \frac{\mu}{z} \sum_{n} z^{n+1} P_{n+1}$$
 (98)

$$\frac{\partial G(z,t)}{\partial t} = \lambda z G - (\lambda + \mu)G + \frac{\mu}{z}G \tag{99}$$

$$= \left(\lambda z - (\lambda + \mu) + \frac{\mu}{z}\right)G\tag{100}$$

• Initial condition on G(z,t) at t=0, based on eq.(91), p.22:

$$G(z, t = 0) = z^{n_0} (101)$$

• Integrate eq.(100) on t:

$$G(z,t) = z^{n_0} \exp\left[\left(\lambda z - (\lambda + \mu) + \frac{\mu}{z}\right)t\right]$$
(102)

¶ Mean queue size:

Use eqs.(96) and (102) to find:

$$\overline{n}(t,\lambda) = (\lambda - \mu)t + n_0 \tag{103}$$

¶ Uncertainty in λ :

$$\mathcal{U}(h,\widetilde{\lambda}) = \left\{\lambda : \max[0, (1-h)\widetilde{\lambda}] \le \lambda \le (1+h)\widetilde{\lambda}\right\}, \quad h \ge 0$$
(104)

¶ Performance requirement:

$$n_1 \le \overline{n}(t_c) \le n_2 \tag{105}$$

- where n_1 , n_2 and t_c are specified. Typically, $n_1 < 0$ and $n_2 > 0$.
- ullet $t_{
 m c}$ is a clearing time chosen by the designer.
- Denote the performance specification $s = (n_1, n_2)$.
- Denote the design variables $q = (\mu, t_c)$.

¶ Robustness with design variables q and specifications s:

$$\widehat{h}(q,s) = \max \left\{ h : \left(\max_{\lambda \in \mathcal{U}(h,\widetilde{\lambda})} \overline{n}(t_{c},\lambda) \right) \leq n_{2} \text{ and } \left(\min_{\lambda \in \mathcal{U}(h,\widetilde{\lambda})} \overline{n}(t_{c},\lambda) \right) \geq n_{1} \right\}$$
 (106)

¶ Sub-problem robustnesses:

$$\widehat{h}_1(q,s) = \max \left\{ h : \left(\min_{\lambda \in \mathcal{U}(h,\widetilde{\lambda})} \overline{n}(t_c,\lambda) \right) \ge n_1 \right\}$$
(107)

$$\hat{h}_2(q,s) = \max \left\{ h : \left(\max_{\lambda \in \mathcal{U}(h,\widetilde{\lambda})} \overline{n}(t_c,\lambda) \right) \le n_2 \right\}$$
 (108)

Since both requirements are necessary:

$$\hat{h}(q,s) = \min[\hat{h}_1(q,s), \ \hat{h}_2(q,s)]$$
 (109)

\P Deriving \widehat{h}_2 :

$$\max_{\lambda \in \mathcal{U}(h,\widetilde{\lambda})} \left[(\lambda - \mu) t_{c} + n_{0} \right] \le n_{2} \implies \left[(1+h)\widetilde{\lambda} - \mu \right] t_{c} + n_{0} \le n_{2}$$
(110)

Thus:

$$\hat{h}_2(q,s) = \begin{cases} \frac{n_2 - n_0}{\tilde{\lambda} t_c} + \frac{\mu}{\tilde{\lambda}} - 1 & \text{if } (\tilde{\lambda} - \mu) t_c + n_0 \le n_2 \\ 0 & \text{else} \end{cases}$$
 (111)

\P Deriving \widehat{h}_1 :

• The inner minimum in eq.(107) is a decreasing function of h (fig. 6):

$$\min_{\lambda \in \mathcal{U}(h,\widetilde{\lambda})} \overline{n}(t_{c},\lambda) = \begin{cases} \left[(1-h)\widetilde{\lambda} - \mu \right] t_{c} + n_{0} & \text{if } h \leq 1 \\ -\mu t_{c} + n_{0} & \text{else} \end{cases}$$
(112)

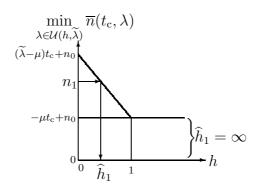


Figure 6: Schematic illustration of the evaluation of \hat{h}_1 from eq.(112).

• Thus:

$$\hat{h}_1(q,s) = \begin{cases} 0 & \text{if } (\tilde{\lambda} - \mu)t_c + n_0 \le n_1 \\ 1 - \frac{n_1 - n_0}{\tilde{\lambda}t_c} - \frac{\mu}{\tilde{\lambda}} & \text{if } -\mu t_c + n_0 \le n_1 < (\tilde{\lambda} - \mu)t_c + n_0 \\ \infty & \text{if } n_1 < -\mu t_c + n_0 \end{cases}$$

$$(113)$$

 $\P \ \widehat{h}(q,s)$ from combining eqs.(109), (111) and (113).

¶ Maximal robustness.

ullet From eq.(109), p.24, we see that the choice of $q=(\mu,t_{\rm c})$ which maximizes $\hat{h}(q,s)$ is the choice which causes:

$$\hat{h}_1(q,s) = \hat{h}_2(q,s)$$
 (114)

- Suppose that n_1 and n_2 are such that $\hat{h}_1(q,s)$ and $\hat{h}_2(q,s)$ are both positive and finite.
- Then eq.(114) is:

$$1 - \frac{n_1 - n_0}{\tilde{\lambda} t_c} - \frac{\mu}{\tilde{\lambda}} = \frac{n_2 - n_0}{\tilde{\lambda} t_c} + \frac{\mu}{\tilde{\lambda}} - 1 \tag{115}$$

which implies:

$$\mu = \widetilde{\lambda} + \frac{\Delta}{t_c}$$
 where $\Delta = n_0 - \frac{n_1 + n_2}{2}$ (116)

- ullet That is, for any $t_{
 m c}$, choosing μ according to eq.(116) maximizes $\widehat{h}(q,s)$ for that $t_{
 m c}$.
- For any t_c , the robustness with μ from eq.(116) is:

$$\hat{h}(q,s) = \hat{h}_1(q,s) = \hat{h}_2(q,s) = \frac{n_2 - n_1}{2\tilde{\lambda}t_c}$$
 (117)

provided that n_1 and n_2 are such that $\hat{h}_1(q,s)$ and $\hat{h}_2(q,s)$ are both positive and finite.

- We see from eq.(117) the following trade-offs:
- \circ Robustness increases as acceptable un-used capacity increases (as n_1 becomes more negative):

$$\frac{\partial \hat{h}(q,s)}{\partial n_1} < 0 \tag{118}$$

Robustness increases as the acceptable # of un-served clients increases:

$$\frac{\partial \hat{h}(q,s)}{\partial n_2} > 0 \tag{119}$$

 \circ Robustness increases as the tolerance-window n_2-n_1 increases:

$$\frac{\partial \tilde{h}(q,s)}{\partial (n_2 - n_1)} > 0 \tag{120}$$

o Robustness increases as clearing time decreases:

$$\frac{\partial \hat{h}(q,s)}{\partial t_{c}} < 0 \tag{121}$$

3 Probabilistic Info-Gap Parameter

¶ Basic idea:

- \circ Complex temporal or spatial waveforms are modelled by an info-gap model, $\mathcal{U}(h, \tilde{u}), h \geq 0$.
- \circ The uncertainty parameter h has physical meaning. E.g. energy of event.
- \circ The uncertainty in h is represented by a pdf.

¶ Example:

- ∘ Dynamic system with uncertain load $u \in \mathcal{U}(h, \tilde{u}), h \ge 0$.
- \circ Load u causes damage $\delta(u)$.
- o Failure if:

$$\delta_u(t) \ge \Delta_{\mathrm{c}}$$
 (122)

¶ Robustness:

$$\widehat{h}(q, \Delta_{c}) = \max \left\{ h : \left(\max_{u \in \mathcal{U}(h, \widetilde{u})} \delta_{u}(t) \right) \le \Delta_{c} \right\}$$
(123)

q is the vector of decision variables.

¶ Failure can not occur if:

$$h < \widehat{h}(q, \Delta_{\rm c})$$
 (124)

¶ Failure **need not occur** even if:

$$h \ge \hat{h}(q, \Delta_c) \tag{125}$$

(Load may be propitious.)

- ¶ We cannot calculate P_f because p(u) is unknown.
- ¶ We can calculate an upper bound for P_f :

$$P_{\mathrm{f}} \leq \mathsf{Prob}\left[h \geq \widehat{h}(q, \Delta_{\mathrm{c}})\right] = 1 - P\left[\widehat{h}(q, \Delta_{\mathrm{c}})\right]$$
 (126)

 $P(\cdot)$ is the cumulative probability distribution of h.

\P Optimal q:

- \circ We can seek q to maximize $\widehat{h}(q,\Delta_{\mathrm{c}}).$
- $\circ P(h)$ is a monotonically increasing function.
- \circ Thus maximizing $\hat{h}(q, \Delta_c)$ also maximizes $P(\hat{h})$ and minimizes $1 P(\hat{h})$.

¶ Proof:

$$\partial P(h)/\partial h \ge 0 \tag{127}$$

and because:

$$\frac{\partial P\left[\hat{h}(q, \Delta_{c})\right]}{\partial q} = \frac{\partial P\left[\hat{h}(q, \Delta_{c})\right]}{\partial h} \frac{\partial \hat{h}(q, \Delta_{c})}{\partial q}$$
(128)

QED

¶ Equivalent definition of the robust optimal action \hat{q} :

$$\hat{h}(\hat{q}, \Delta_{c}) = \max_{q \in \mathcal{Q}} P\left[\hat{h}(q, \Delta_{c})\right]$$
(129)

 \P Likewise, $P(\cdot)$ defines the same preference ordering on q as $\hat{h}(q,\Delta_{\rm c})$:

$$q \succ q' \quad \text{if} \quad P\left[\hat{h}(q, \Delta_{\text{c}})\right] > P\left[\hat{h}(q', \Delta_{\text{c}})\right]$$
 (130)

¶ This provides a probabilistic calibration of the relative merits of the options.