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1 Linear Regression

Figure 1: WLAN client motion.

§ Modeling is a decision problem. We will consider 3 examples:
• Modeling WLAN client position and predicting next location.
• Modeling a mechanical S-N curve.
• Modeling the economic Phillips curve.1

§ WLAN client tracking and prediction:
§ Challenge: Two foci of uncertainty:
• Randomness:
◦ Noisy data (statistics).

• Info-gaps:
◦ Changing plans and intentions of client.
◦ Interaction with other people.
◦ Environmental variability.

§ Questions:
• How to use empirical data to model uncertain past motion?
• Is optimal estimation (e.g. least-squares) a good strategy for predicting future position?
• Can we do better?
• How to manage both statistical and info-gap uncertainty?
• How to evaluate estimate vis a vis info-gaps?

1Source: Yakov Ben-Haim, 2010, Info-Gap Economics: An Operational Introduction, Palgrave-Macmillan.
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§ Mechanical S-N curve:

Figure 2: S-N curves. Figure 3: S-N curves.

§ Challenge: Two foci of uncertainty:
• Randomness:
◦ Noisy data (statistics).

• Info-gaps:
◦ Changing fundamentals.
◦ Material variability.
◦ Environmental variability.

§ Questions:
• How to use empirical data to model uncertain material?
• Is optimal estimation (e.g. least-squares) a good strategy?
• Can we do better?
• How to manage both statistical and info-gap uncertainty?
• How to evaluate estimate vis a vis info-gaps?
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§ Economic Phillips curve:
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Figure 4: Inflation vs. unemploy-
ment in the US, 1961–1967.

Figure 5: Inflation vs. unemploy-
ment in the US, 1961–1993.

§ Inflation vs. unemployment, US, ’61–’67:
• Approximately linear.
• Slope ≈ −0.87 %CPI/%unemployment.

§ Slopes in other periods:
• ’61–’67: −0.87 • ’80–’83: −3.34 • ’85–’93: −1.08 • ’70–’78: ???

§ Challenge: Two foci of uncertainty:
• Randomness:
◦ Noisy data (statistics).

• Info-gaps:
◦ Changing fundamentals.
◦ Data revision.

§ Questions:
• How to use historical data to model the future?
• Is optimal estimation (e.g. least-squares) a good strategy?
• Can we do better?
• How to manage both statistical and info-gap uncertainty?
• How to evaluate estimate vis a vis info-gaps?
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§ Paired data, fig. 6:
• CPI, system lifetime, etc: c1, . . . , cn.
• Unemployment, mechanical stress, etc: u1, . . . , un.

Figure 6: Paired data.

§ Least-squares estimate of slope:
• Linear regression:

c = su+ b (1)

• Mean squared error:

MSE =
1

N

N∑

i=1

[ci − (sui + b)]2 (2)

• MSE estimate of the slope:
s̃ = argmin

s
MSE (3)

One finds:

s̃ =
cov(u, c)

var(u)
(4)

where:

cov(u, c) =
1

n

n∑

i=1

ciui −
(
1

n

n∑

i=1

ci

)(
1

n

n∑

i=1

ui

)
(5)

and var(u) = cov(u, u).
• In our case, fig. 6, s̃ < 0.

§ Robustness question:
How much can the data err due to info-gaps, and the slope’s error will be acceptable?

§ Moments:
γ = covariance, cov(u, c). γ̃ = estimate.
σ2 = variance, var(u). σ̃2 = estimate.

§ Consider info-gap in data. Specifically, unknown fractional errors of moments:
∣∣∣∣∣
γ − γ̃

γ̃

∣∣∣∣∣ ,
∣∣∣∣∣
σ2 − σ̃2

σ̃2

∣∣∣∣∣ (6)

§ Fractional-error info-gap model:

U(h) =





(γ, σ2) :

∣∣∣∣∣
γ − γ̃

γ̃

∣∣∣∣∣ ≤ h,

∣∣∣∣∣
σ2 − σ̃2

σ̃2

∣∣∣∣∣ ≤ h, σ2 ≥ 0




, h ≥ 0
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§ Least-squares estimate: s̃ = γ̃/σ̃2.
Actual value: s = γ/σ2.

§ Performance requirement: |s(γ, σ2)− s̃| ≤ rc.

§ Robustness of LS estimate s̃:
Max horizon of uncertainty in moments
at which s̃ errs no more than rc:

ĥ(s̃, rc) = max

{
h :

(
max

γ,σ2∈U(h)
|s(γ, σ2)− s̃|

)
≤ rc

}
(7)

§ Derivation of the robustness:
• m(h) = inner maximum in eq.(7).
• m(h) occurs at γ = (1 + h)γ̃, σ2 = (1− h)+σ̃2.
• Thus, for h ≤ 1:

m(h) =

∣∣∣∣∣
(1 + h)γ̃

(1− h)σ̃2 − γ̃

σ̃2

∣∣∣∣∣ (8)

=

(
1 + h

1− h
− 1

) ∣∣∣∣
γ̃

σ̃2

∣∣∣∣ (9)

=
2h

1− h
|s̃| (10)

• Equate m(h) = rc and solve for h (recall s̃ < 0):

2h

1− h
= −rc

s̃
= ρ (definition) =⇒ ĥ =

ρ

2 + ρ
(≤ 1) (11)

§ Robustness of LS estimate s̃:

ĥ(s̃, ρ) =
ρ

2 + ρ
, ρ = −rc/s̃ (12)

Recall: s̃ < 0 so ρ > 0.
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Figure 7: Robustness of
estimated slope, ĥ(s̃, ρ),
vs. critical error, ρ.
Eq.(12).

• Best-estimate: zero robustness.
• Trade-off: robustness vs. estim. error.
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• Example: ρ = 0.2, ĥ = 0.09.

§ Can we do better than LS estimate?
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§ Estimates of Phillips slope:
• s̃ = LS estimate, with robustness ĥ(s̃, rc).
• se= any estimate, with robustness ĥ(se, rc).
• Definitions: ζ = se/s̃, ρ = −rc/s̃. (Recall: s̃ < 0.)
• Robustness of se, in analogy to eq.(7):

ĥ(se, rc) = max

{
h :

(
max

γ,σ2∈U(h)
|s(γ, σ2)− se|

)
≤ rc

}
(13)

◦ Let m(h) denote the inner minimum:

m(h) = max
γ,σ2∈U(h)

∣∣∣∣
γ

σ2
− se

∣∣∣∣ (14)

◦ For h ≤ 1 this occurs at one of the following:

Either: γ = (1 + h)γ̃, σ2 = (1− h)σ̃2 (15)

Or: γ = (1− h)γ̃, σ2 = (1 + h)σ̃2 (16)

◦ Denote the corresponding m(h)’s:

m1(h) =

∣∣∣∣∣
(1 + h)γ̃

(1− h)σ̃2 − se

∣∣∣∣∣ (17)

m2(h) =

∣∣∣∣∣
(1− h)γ̃

(1 + h)σ̃2 − se

∣∣∣∣∣ (18)

◦ m(h) is the greater of these two alternatives:

m(h) = max[m1(h), m2(h)] (19)

The maximum depends on the value of h.
◦ After some algebra, and equating m(h) = rc, one finds:

ĥ(se, ρ) =





ρ+ ζ − 1
ρ+ ζ + 1 if ρ2 ≥ ζ2 − 1 and ρ ≥ 1− ζ

ρ− ζ + 1
−ρ+ ζ + 1 if ρ2 ≤ ζ2 − 1 and ρ ≥ ζ − 1

(20)

ĥ(se, ρ) is zero otherwise. Note ĥ ≤ 1.
• Eq.(20) includes eq.(12) as a special case, when ζ = 1.
• When ζ > 1, the robustness follows the lower line of eq.(20) (which has greater slope

than the robustness curve for s̃) for small ρ, and then follows the upper line of the equation
for larger ρ. This causes crossing of robustness curves as illustrated by the solid and
dashed lines in figs. 9 and 10. (The two lines in eq.(20) are equal when ρ2 = ζ2 − 1.)
• LS estimate: 0 error, 0 robustness.
• Trade-off: robustness vs. estim. error.
• Curve crossing: preference reversal.

§ Can we do better than least-squares? Yes, but at a price:
Robust-satisficing estimate is more robust to uncertainty at positive estimation error.
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Figure 8: ĥ(s̃, ρ) vs. ρ.
Figure 9: ĥ(se, ρ) vs.
ρ. ζ = 1 (solid), 1.05
(dash), 0.95 (dot dash).

Figure 10: ĥ(se, ρ) vs.
ρ. ζ = 1 (solid), 1.15
(dash), 0.85 (dot-dash).

2 System Identification

¶ Optimal system identification: Adjusting a model to conform to data.

¶ Main thesis:
Optimal identification has no robustness to residual errors in the model.

¶ Corollaries:
• Sub-optimal models can be robust.
• Sub-optimal models can
◦ be more robust than, and
◦ reproduce data as well as,
the optimal model.

2.1 Model Uncertainty: Preliminary Example
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Figure 11: Inflation vs. unemployment
in the US, 1961–1967.

Figure 12: Inflation vs. unemployment
in the US, 1961–1993.

§ From fig. 11, US unemployment vs. inflation for 1961–1967 looks linear:

π = aU + b (21)

§ From fig. 12 shows more complicated dynamics.
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§ Slopes in other periods:
◦ ’61–’67: −0.87 ◦ ’80–’83: −3.34 ◦ ’85–’93: −1.08 ◦ ’70–’78: ???

§ Info-gaps:
◦ Uncertain data and process.
◦ Unknown functional relation.

§ In section 1 we consider uncertain data. Now we consider uncertain model structure.

2.2 Optimal System Identification

¶ Notation:
yi = i th data set, i = 1, . . . , N ,
fi(q) = Model prediction of yi.
q = Parameters and properties of model.
Y =

{
y1, . . . , yN

}
.

F(q) =
{
f1(q), . . . , fN (q)

}
.

R[Y ,F(q)]= Performance of predictor, e.g. mean-square error:

R[Y , f(q)] = 1

N

N∑

i=1

‖fi(q)− yi‖2 (22)

¶ Optimal model, q•, minimizes performance-measure:

q• = argmin
q
R[Y , F (q)] (23)

¶ We will show: fidelity of model to data as good as R[Y , f(q•)] is
• obtainable but not feasible.
• not robust to info-gaps in model.
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2.3 Uncertainty

¶ Model structure fi(q) is wrong. Relevant factors are missing:
• Non-linearities.
• Time dependence.
• Dimensionality.
• Etc.

¶ Complete model:
φi = fi(q) + ui (24)

fi(q) = Best known model structure.
φi = Correct model structure.
ui = Unknown info-gap.

¶ Info-gap model of uncertainty: Unbounded family of nested sets (of models):

fi(q) ∈ U (h, fi(q)) , h ≥ 0 (25)

h < h• =⇒ U (h, fi(q)) ⊂ U
(
h•, fi(q)

)
(26)
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2.4 Robustness

¶ Fidelity of model to data:
R [Y ,F(q)] = Fidelity of model fi(q) to data.
R [Y ,Fu(q)] = Fidelity of model fi(q) + ui to data.
rc = Acceptable fidelity of model to data.

¶ Robustness of model fi(q):

• How wrong can fi(q) be without exceeding acceptable fidelity?
• Epistemic, not ontological question.
• Max horizon of uncertainty, h, which does not jeopardize fidelity:

ĥ(q, rc) = max

{
h : max

φi ∈ U(h,fi(q))

i=1, ...,N

R [Y ,Fu(q)] ≤ rc

}
(27)

2.5 Performance and Robustness

¶ R [Y ,F(q)] = Fidelity of model, fi(q), to data.

¶ ĥ(q , rc) = Robustness of model, fi(q), with fidelity-aspiration rc.
¶ Theorem:

rc = R [Y ,F(q)] implies ĥ(q, rc) = 0 (28)

Meaning:
No model can be relied upon to perform “as advertised”.

¶ This holds also for optimal model, q•:

R [Y , f(q•)] = min
q
R [Y, f(q)] (29)

R•
C = R [Y ,F(q•)] implies ĥ(q•, R•

C) = 0 (30)

¶ Implication:
Sub-optimal models can be more robust than optimal model at same fidelity.



estim02.tex INFO-GAP ESTIMATION 14

2.6 Example

¶ 1-dimensional system:
yi = Scalar measurements.
fi(q) = qi. Nominal linear model
R[Y ,F(q)]= Mean-squared error:

R[Y , f(q)] = 1

N

N∑

i=1

(qi− yi)
2 (31)

¶ q• = Least-squares optimal model:

q• = argmin
q
R[Y , f(q)] = η1

η0
(32)

η1 =
1

N

N∑

i=1

i yi, η0 =
1

N

N∑

i=1

i2 (33)

¶ Model error: Uncertain quadratic term.

φi = qi + ui2 (34)

¶ Info-gap model for quadratic uncertainty:

U(h, qi) =
{
φi = qi + ui2 : |u| ≤ h

}
, h ≥ 0 (35)
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¶ Robustness:
Max horizon of uncertainty, h, with acceptable fidelity to data.

ĥ(q, rc) = max

{
h : max

|u| ≤ h
R [Y ,Fu(q)] ≤ rc

}
(36)

ĥ(q, rc) =





0 , rc ≤ ξ2

|ξ1|
ξ
0


−1 +

√√√√1 +
rc − ξ2
ξ2
1


 , ξ2 < rc

(37)

ξ2 =
1

N

N∑

i=1

(qi − yi)
2 (38)

= R [Y,F(q)] (39)

ξ1 =
1

N

N∑

i=1

i2 (qi − yi) (40)

ξ0 =
1

N

N∑

i=1

i4 (41)
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¶ Trade-off: robustness vs. fidelity.

✲

✻

Robustness

ĥ(q, rc)

0 Fidelity aspiration, rc

Good Poor

R [Y ,F(q)]

¶ No robustness for aspiration at nominal performance:

ĥ(q, rc) = 0 if rc = R [Y ,F(q)] (42)

¶ Preference for sub-optimal model:
q• = L.S.-optimal model.
q+ = L.S.-sub-optimal model.
R◦

C = Acceptable fidelity.
q+ preferred to q• at R◦

C.

✲

✻

Robustness

ĥ(q, rc)

0

q•

q+ 6= q•

Fidelity aspiration, rc
R•

c R+
c R◦

c
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✲

✻

Robustness

ĥ(q, rc)

0 Model parameter, q
q• Q̂c

¶ Robust-satisficing model:
q• = L.S.-optimal model. R• = L.S. optimal error.
q̂c =Robust-satisficing model. Maximizes ĥ(q , rc).
RC only slightly > R•. ĥ( q̂c, rc) ≫ ĥ(q•, rc).
q̂c preferred to q•.

¶ Conclusions:
• Any model, fi(q),
◦ has no immunity to unknown quadratic term:

ĥ(q, rc) = 0 if rc = R [Y ,F(q)].
◦ is reliable only at less-than-nominal fidelity.

• Also holds for least-square optimal model, q•.

• Robustness curves can cross:
Sub-optimal model q+

more robust than optimal model q•

at same fidelity to data.

• Info-gap strategy:
◦ Satisfice fidelity to data.
◦ Optimize robustness to model-deficiency.
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2.7 An Interpretation: Focus of Uncertainty

¶ Least-squares estimation focusses on managing error in data, yi:

Minimize:
N∑

i=1

(fi(q) − yi)
2 (43)

¶ Info-gap estimation focusses on managing
• error in data, yi:

Satisfice:
N∑

i=1

(fi(q) − yi)
2

• error in model, fi(q):
Maximize: ĥ(q, rc).
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2.8 Robustness and Opportuneness

¶ Robustness of model fi(q):

how wrong can fi(q) be without exceeding acceptable fidelity?

ĥ(q, rc) = max

{
h : max

φi ∈ U(h,fi(q))

i=1, ...,N

R [Y ,Fu(q)] ≤ rc

}
(44)

¶ Opportuneness of model fi(q):

how wrong must fi(q) be to enable windfall fidelity?

rw ≪ rc

β̂(q, rw) = min

{
h : min

φi ∈ U(h,fi(q))

i=1, ...,N

R [Y ,Fu(q)] ≤ rw

}
(45)

¶ Preferences:
• Robustness:
◦ Immunity to failure.
◦ Satisficing at critical fidelity.
◦ Bigger is better

• Opportunity:
◦ Immunity to windfall.
◦ Windfalling at wildest-dream fidelity.
◦ Big is bad.
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✲

✻ ✻

RobustnessUncertainty

ĥ(q, rc)

β̂(q, rw)

Poor

Good

Good

Poor
0 Fidelity aspiration, rc or rw

Good Poor

R [Y ,F(q)]

¶ Trade-offs:
• Robustness vs. critical fidelity.
• Opportuneness vs. windfall fidelity.
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¶ Sympathetic immunities:
change in model, q , which improves ĥ

also improves β̂.
∂ĥ

∂q

∂β̂

∂q
< 0 (46)

¶ Antagonistic immunities:
change in model, q , which improves ĥ

also degrades β̂.
∂ĥ

∂q

∂β̂

∂q
> 0 (47)

✲

Sym SymAnt

ĥ(q, rc)

β̂(q, rw)

0 Model, q

Figure 13: Schematic immunity curves

(
ĥ

|uM | + 1

)2
− ξ0rc

ξ1
=

(
β̂

|uM | − 1

)2
− ξ0rw

ξ1
(48)
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2.9 Forecasting and looseness of model prediction

§ Source: Yakov Ben-Haim and Francois Hemez, 2011, Robustness, Fidelity and Prediction-
Looseness of Models, Proceedings of the Royal Society, A, to appear.

¶ The issue of prediction looseness:
• At high robustness,

Many models have same fidelity.
• Do their predictions agree?

¶ Unknown complete model:
φi = fi(q) + ui (49)

¶ The info-gap uncertainty model is:
U [h, fi(q)], h ≥ 0.

¶ For design q define:
h⋆ = ĥ(q, rc)

= Robustness of q at rc.
Λ(q) = U [h⋆, fi(q)]

= set of all models, φi, which satisfice the prediction error at rc.
= Predictions of fidelity-equivalent models.
= Prediction-looseness of model q .

¶ Fidelity–robustness trade-off:

rc < R•C =⇒ ĥ(q, rc) ≤ ĥ(q, R•C) (50)

Robustness decreases as fidelity improves.

¶ Robustness–prediction-looseness trade-off:

ĥ(q, rc) < ĥ(q•, rc) =⇒ Λ(q) ⊆ Λ(q•) + µ (51)

Robustness decreases as looseness improves.
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¶ The dilemma:
• Fidelity to data necessary for trueness of model.
• Robustness to model uncertainty verifies fidelity.
• Looseness of model prediction results from

fidelity-robustness to model-uncertainty.

¶ Dilemma due to conflict of two uncertainties:
• Measurement error (spread of data).

Causes need for fidelity.
• Model error (epistemic limitation).

Causes need for robustness.

¶ Hume and the problem of induction:
• The past does not bind the future.
• Experience cannot validate scientific induction.

¶ Robustness-fidelity-looseness trade-offs:
Measurement error and limited understanding
impose prediction looseness.

¶ Epistemological warrant:
• Basis for theory (model) selection.
• Obtained by:
◦ High fidelity to data.
◦ High robustness to model error.

¶ Question: Is warrant warranted?
Warrant = Hi fidelity and high robustness

= High prediction looseness.
Answer: Doesn’t look like it.
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3 Tychonov Up-Dating of a Linear System with Model Un-
certainty

This section based on:
Yakov Ben-Haim and Scott Cogan, Up-Dating a Linear System with Model Uncertainty:
An Info-Gap Approach, Intl. Conf. on Uncertainty in Structural Dynamics, University of
Sheffield, UK. 15–17.6.2009.

3.1 Formulation of the Up-Dating Problem

§ Measurements:
f ∈ ℜJ is the exact force vector.
y(m) ∈ ℜN is the noisy response vector, for m = 1, . . . , M .

§ Model we will up-date: choose the flexibility matrix V in:

y = V f (52)

§ Ill-conditioning:
• The mean squared error is:

S =
1

M

M∑

m=1

‖y(m) − y‖2 (53)

=
1

M

M∑

m=1

‖y(m) − V f‖2 (54)

=
1

M

M∑

m=1

(
y(m) − V f

)T (
y(m) − V f

)
(55)

• The least squares estimate is the choice of V that satisfies:

∂S

∂V
= 0 (56)

◦ This is very sensitive to noise in the observations, y(m) and f .
◦ One approach is called Tychonov regularization.

§ Tychonov-regularized least squared error is:

S = λ‖ỹ − y||2 + 1

M

M∑

m=1

‖y(m) − y‖2 (57)

where:
• ỹ is a prior estimate of the response.
• We are using the Euclidean norm: ‖x‖2 = xTx.

§ Uncertainty:
• Statistical: noisy data.
• Info-gap: uncertain model structure. Specifically, inhomogeneous input/output relation:

y = V f + u (58)
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The data don’t reflect this info-gap. E.g. Lab vs real-life, change due to wear, ignorance,
etc.
§ Actual mean-squared error. Substituting eq.(58) into eq.(57):

S(V, u) = (1 + λ)fTV TV f − 2 (λỹ + y)T V f + λ‖ỹ‖2 + ‖y‖2︸ ︷︷ ︸
So

+ (1 + λ)uTu− 2 (λỹ + y − (1 + λ)V f)T u︸ ︷︷ ︸
2zT u︸ ︷︷ ︸

Su

(59)

= So + (1 + λ)uTu− 2zTu (60)

where:

y =
1

M

M∑

m=1

y(m) (61)

‖y‖2 =
1

M

M∑

m=1

‖y(m)‖2 (62)

• So is the ordinary Tychonov-regularized least-squares error function for the linear model,
y = V f .
• Su contains the uncertain inhomogeneous terms in the model in eq.(58). Su also con-

tains the measurements, f and y(1), . . . , y(M), in the vector z and in So.

§ Goal. We wish to choose V but we cannot actually minimize S(V, u) since u is unknown.
The approach we take is to choose V to make S(V, u) adequately small for a maximal range
of possible realizations of u.

3.2 Robustness to Uncertainty

§ System model: S(V, u) in eq.(60).

§ Uncertainty model: spherical info-gap model for uncertain vector u in eq.(58):

U(h) =
{
u : uTu ≤ h2

}
, h ≥ 0 (63)

§ Performance requirement: regularized squared error must not exceed Sc:

S(V, u) ≤ Sc (64)

§ Robustness function.

ĥ(V, Sc) = max

{
h :

(
max
u∈U(h)

S(V, u)

)
≤ Sc

}
(65)

§ Note that robustifying w.r.t. data which does not include the non-homogeneous term is a
bit like the Tychonov concept of biasing the estimate towards a prior value.
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§ One can readily show that:

ĥ(V, Sc) =
1

1 + λ

(
−
√
zT z +

√
zT z + (1 + λ)(Sc − So)

)
(66)

or zero if Sc ≤ So. The dependence of the robustness on the model matrix, V , and on the
observations f and y(m), arises through So and z, defined in eq.(59).

§ Derivation of eq.(66):
• We will use Lagrange optimization to evaluate m(h), the inner maximum in eq.(65).
• We must maximize S in eq.(60) on p.25:

S = So + (1 + λ)uTu− 2zTu (67)

subject to the constraint that u ∈ U(h), eq.(63), p.25.
• By completing the square and comparing with eq.(67) we see that S is a spheroid:

S =

S′

︷ ︸︸ ︷
(1 + λ)(u− v)T (u− v) + ∆ (68)

= (1 + λ)uTu− 2(1 + λ)vTu+ (1 + λ)vTv + ∆ (69)

=⇒ (1 + λ)v = z =⇒ v =
1

1 + λ
z (70)

=⇒ (1 + λ)vTv =
1

1 + λ
zT z =⇒ So = ∆+

1

1 + λ
zT z (71)

=⇒ ∆ = So −
1

1 + λ
zT z (72)

• Our task is to maximize S ′ subject to uTu ≤ h2.
◦ S ′ = x2 is the set of u’s that form a spheroid surface centered at v and of radius x.
◦ uTu ≤ h2 is the set of u’s that form a solid sphere centered at the origin.
◦ S ′ is maximized, at fixed h, when the spheroid surface contains the solid sphere, and

any further expansion of S ′ would no longer intersect the solid sphere: fig. 14.

Figure 14: Intersection of spheroid surface, S ′ = x2, with solid sphere, uTu ≤ h2.

◦ Thus S ′ is maximized by a u on the surface of the spheroid uTu = h2.
◦ Thus we can maximize subject to the equality constraint, uTu = h2.

• Define the objective function with Lagrange multiplier α, from eq.(60) on p.25:

H = So + (1 + λ)uTu− 2zTu+ α(h2 − uTu) (73)

• The condition for an extremum is:

0 =
∂H

∂u
= 2(1 + λ)u− 2αu− 2z (74)

=⇒ (1 + λ− α)u = z (75)

=⇒ u =
1

1 + λ− α
z (76)
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• From the constraint:

h2 =
1

(1 + λ− α)2
zT z =⇒ 1

1 + λ− α
=

±h√
zT z

=⇒ u =
±h√
zT z

z (77)

• Hence the inner maximum is:

m(h) = So + (1 + λ)h2 ∓ 2h
√
zT z (78)

Choose the ‘+’ for a maximum.
• Equate m(h) to Sc and solve for h to find the robustness:

m(h) = Sc =⇒ (1 + λ)h2 + 2h
√
zT z + So − Sc︸ ︷︷ ︸

<0

= 0 (79)

=⇒ h2 +
2
√
zT z

1 + λ
h+

So − Sc

1 + λ
= 0 (80)

The coefficients of h change sign once so, by the Descartes rule,2 there is 1 positive
root.
• The positive root of eq.(80) is eq.(66), p.26.

3.3 Robustness of the Tychonov Regularized Model

§ Preview. In this section we:
• Derive an explicit expression for the robustness of an up-dated model which minimizes

the Tychonov-regularized mean squared error, So in eq.(59).
• Theorem 1 asserts that Tychonov-optimal matrices are more robust to uncertainty than

all other matrices, at fixed Tychonov weight.
• Theorem 2 asserts that the robustness of Tychonov optimal matrices increases as the

Tychonov weight decreases.
• Proofs appear in appendix 3.4.

§ Tychonov-regularized mean squared error, So in eq.(59), p.25, can be written:

So(V ) = (1 + λ)
[
(V f − a)T (V f − a)

]
+ b (81)

where:

a =
1

1 + λ
(λỹ + y) (82)

b = λ‖ỹ‖2 + ‖y‖2 − (1 + λ)aTa (83)

§ Minimization of So(V ):
• If f 6= 0 then the matrix V can always be chosen to precisely satisfy V f = a, which

minimizes So(V ) in eq.(81).
• Let VT denote any such choice of V , which we will refer to as a Tychonov optimal matrix.
• It then results that z, defined in eq.(59), is identically zero.

2Pearson, Carl E., ed., Handbook of Applied Mathematics. 1st ed., p.11
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• Furthermore one finds that So(VT) = b.
• One now finds the robustness in eq.(66), for any Tychonov optimal matrix VT, to be:

ĥ(VT, Sc) =

√
Sc − b

1 + λ
(84)

or zero if Sc ≤ b.

Theorem 1 A Tychonov optimal matrix, VT, is strictly more robust than any other matrix V ,
at fixed Tychonov weight λ:

ĥ(VT, Sc) > ĥ(V, Sc) (85)

for all values of Sc > b.

§ Note relation to result by Zacksenhouse et al:
Zacksenhouse et al.3 [proposition 2] derive a similar result though they consider info-gap
uncertainty in the data, rather than uncertainty in the model structure as we have done.

Theorem 2 Robustness of a Tychonov optimal matrix decreases as the Tychonov weight
increases.
Given two Tychonov weights, λ < λ′, with corresponding Tychonov optimal matrices VT and
V ′
T, respectively. Then:

ĥ(VT, Sc) > ĥ(V ′
T, Sc) (86)

for all values of Sc > b(λ).

The proof of this theorem depends on the following lemma. First define the variance of the
measured responses as:

‖y − y‖2 = ‖y‖2 − ‖y‖2 (87)

where the two terms on the right are defined in eqs.(61) and (62).

Lemma 1 The coefficient b in eq.(62) can be expressed:

b =
λ

1 + λ
‖ỹ − y‖2 + ‖y − y‖2 (88)

§ Note from lemma 1 that:
ỹ = y implies b = ‖y − y‖2 (89)

Thus, if the Tychonov estimate, ỹ, equals the measured average, y, then:
• b is independent of λ.
• ĥ(VT, Sc) decreases with increasing λ, but does not shift to the right.

3Zacksenhouse, M., S.Nemets, M.A.Lebedev and M.A.L.Nicolelis, 2009, Robust-satisficing linear regres-
sion: Performance/robustness trade-off and consistency criterion, Mechanical Systems and Signal Process-
ing, 23: 1954–1964.
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Theorems 1 and 2 are illustrated in figs. 15 and 16. The data are in the footnotes4 and5.
Combining theorems 1 and 2 we observe that Tychonov optimal matrices are more ro-
bust than other matrices (evaluated at the same Tychonov weight) but that increasing the
Tychonov weight causes a reduction in the robustness of the Tychonov optimal matrix.
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Figure 15: Robustness curves illus-
trating theorem 1. Tychonov-optimal
(solid) and a different V matrix (dash).
Tychonov weight: λ = 0.3

Figure 16: Robustness curves illus-
trating theorem 2. Tychonov optimal
matrices with different weights: λ =
0.3 (solid), 0.6 (dash) and 1.0 (dot).

§ Implications of the theorems:
• Theorem 1: Tychonov better (more robust) than non-Tychonov.
• Theorem 2: Less Tychonov better (more robust) than more Tychonov.

3.4 Proofs

Proof of theorem 1. Since λ is non-negative, we see from eq. (81) that:

b ≤ So(V ) (90)

with strict inequality unless V is itself a Tychonov optimal matrix.
Hence, since V is not a Tychonov optimal matrix:

Sc − So < Sc − b (91)

for all values of Sc. Hence:

(1 + λ)(Sc − So) < (1 + λ)(Sc − b) (92)

4The data for these figures are:

ỹ
T = (2.3 1.2), fT = (1 0.7 0.3)

Y =

(
3.0 3.2 2.8 3.1
1.5 1.4 1.6 1.7

)

5The non-Tychonov matrix is V =

(
1.2 1.6 2.5
0.5 0.9 1.5

)
.
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Thus:
zT z + (1 + λ)(Sc − So) < zT z + (1 + λ)(Sc − b) (93)

Hence:

zT z + (1 + λ)(Sc − So) < zT z +
√
zT z

√
(1 + λ)(Sc − b) + (1 + λ)(Sc − b) (94)

=
(√

zT z +
√
(1 + λ)(Sc − b)

)2

(95)

Thus: √
zT z + (1 + λ)(Sc − So) <

√
zT z +

√
(1 + λ)(Sc − b) (96)

Hence
1

1 + λ

(
−
√
zT z +

√
zT z + (1 + λ)(Sc − So)

)
<

√
Sc − b

1 + λ
(97)

which, by referring to eqs.(66) and (84) and recalling that Sc > b, proves the result.
Proof of lemma 1. Combining eqs.(82) and (83) we can write:

b = λ‖ỹ‖2 + ‖y‖2 − 1

1 + λ

(
λ2‖ỹ‖2 + 2λỹTy + ‖y‖2

)
(98)

=
λ

1 + λ
‖ỹ‖2 − 2λ

1 + λ
ỹTy + ‖y‖2 − 1

1 + λ
‖y‖2 (99)

Completing the square in the first two terms in eq.(99):

b =
λ

1 + λ

(
‖ỹ‖2 − 2ỹTy + ‖y‖2

)
− λ

1 + λ
‖y‖2 + ‖y‖2 − 1

1 + λ
‖y‖2 (100)

=
λ

1 + λ
‖ỹ − y‖2 + ‖y‖2 − ‖y‖2 (101)

which, with the definition in eq.(87), completes the proof.
Proof of theorem 2. Eqs.(84) and (88) enable explicit derivation of the partial derivative of
ĥ(VT, Sc) with respective to λ, which is found to be strictly negative for all values of Sc for
which the robustness is positive (Sc > b):

∂ĥ(VT, Sc)

∂λ
= −‖ỹ − y‖2 + (1 + λ)(Sc − b)

2(1 + λ)3

√
1 + λ

Sc − b
(102)
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4 Estimating an Uncertain Probability Density

¶ The problem:
• Estimate parameters of a probability density function (pdf) based on observations.
• Common approach: select parameter values to maximize the likelihood function for the

class of pdfs.
• In this section: simple example of a situation where the form of the pdf is uncertain, not

only parameters .

¶ Notation:
• x = random variable.
• X = (x1, . . . , xN ) = random sample.
• p̃(x|λ) = be a pdf for x with parameters λ.

¶ Likelihood function:

L(X, p̃) =
N∏

i=1

p̃(xi|λ) (103)

¶ Maximum likelihood estimate (MLE):

λ⋆ = argmax
λ

L(X, p̃) (104)

¶ Examples of MLE.
• Exponential distribution: The pdf is:

p̃(x|λ) = λe−λx, x ≥ 0 (105)

The likelihood function, from eq.(103), is:

L =
N∏

i=1

p̃(xi|λ) = λN exp

(
−λ

N∑

i=1

xi

)
(106)

Thus:
∂L

∂λ
=

(
NλN−1 − λN

N∑

i=1

xi

)
exp

(
−λ

N∑

i=1

xi

)
(107)

Equating to zero and solving for λ yields the MLE:

0 =
∂L

∂λ
=⇒ 0 = NλN−1 − λN

N∑

i=1

xi =⇒ 1

λMLE
=

1

N

N∑

i=1

xi (108)

Note that:
E(x) =

1

λ
(109)

• Normal distribution: MLE of the mean. The pdf is:

p̃(x|λ) = 1√
2πσ

e−(x−µ)2/2σ2

(110)
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The likelihood function, from eq.(103), is:

L =
N∏

i=1

p̃(xi|λ) =
1

(2π)N/2σN
exp

(
− 1

2σ2

N∑

i=1

(xi − µ)2
)

(111)

Note that:

µMLE = argmax
µ

L = argmin
µ

N∑

i=1

(xi − µ)2 = Least Squares Estimate (112)

Thus MLE and LSE agree. Define the squared error:

S =
N∑

i=1

(xi − µ)2 (113)

Thus:
∂S

∂µ
= 0 = −2

N∑

i=1

(xi − µ) =⇒ µMLE =
1

N

N∑

i=1

xi (114)

¶ Robust-satisficing:
• Form of the pdf is not certain.
• p̃(x|λ) is most reasonable choice of the form of the pdf. We will estimate λ.
• Actual form of the pdf is unknown.
• We wish to choose those parameters to:
◦ Satisfice the likelihood.
◦ To be robust to the info-gaps in the shape of the actual pdf which generated the data,

or which might generate data in the future.

¶ Info-gap model:

U(h, p̃) = {p(x) : p(x) ∈ P , |p(x)− p̃(x|λ)| ≤ hψ(x)} , h ≥ 0 (115)

• P is the set of all normalized and non-negative pdfs on the domain of x.
• ψ(x) is the known envelope function. E.g. ψ(x) = 1, implying severe uncertainty on tail.
• h is the unknown horizon of uncertainty.

¶ Question:
Given the random sample X, and the info-gap model U(h, p̃), how should we choose the

parameters of the nominal pdf p̃(x|λ)?

¶ Robustness:

ĥ(λ, Lc) = max

{
h :

(
min

p∈U(h,p̃)
L(X, p)

)
≥ Lc

}
(116)

¶ m(h) = inner minimum in eq.(116).
For the info-gap model in eq.(115) m(h) is obtained for the following choices of the pdf

at the data points X:

p(xi) =

{
p̃(xi)− hψ(xi) if h ≤ p̃(xi)/ψ(xi)

0 else
(117)



estim02.tex INFO-GAP ESTIMATION 33

Choose p(x) = p̃(x) for all other x’s.
Define:

hmax = min
i

p̃(xi)

ψ(xi)
(118)

Since m(h) is the product of the densities in eq.(117) we find:

m(h) =





N∏

i=1

[p̃(xi)− hψ(xi)] if h ≤ hmax

0 else
(119)

¶ m(h) and ĥ(λ, Lc):
• Robustness is the max h at which m(h) ≥ Lc.
• m(h) strictly decreases as h increases.
• Hence robustness is the solution of m(h) = Lc.
• Hence m(h) is the inverse of ĥ(λ, Lc):

m(h) = Lc implies ĥ(λ, Lc) = h (120)

• Plot of m(h) vs. h is plot of Lc vs. ĥ(λ, Lc).
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Figure 17: Robustness
curves. λ⋆ = 3.4065.

Figure 18: Loci of in-
tersection of robustness
curves ĥ(λ⋆, Lc) and
ĥ(1.1λ⋆, Lc).

¶ Robustness curves in fig. 17 based on:
• Eqs.(119) and (120).
• Nominal pdf is exponential, p̃(x|λ) = λ exp(−λx) with λ = 3.
• Envelope function is constant, ψ(x) = 1. Note severe uncertainty on the tail.
• Random sample, X, with N = 20.
• MLE of λ, eq.(104): λ⋆ = 1/x where x = (1/N)

∑N
i=1 xi is the sample mean.

• Robustness curves for 3 λ’s: 0.9λ⋆, λ⋆, and 1.1λ⋆.

¶ Robustness of the estimated likelihood is zero for any λ:
• Likelihood function for λ is L[X, p̃(x|λ)].
• Each curve in fig.17, ĥ(λ, Lc) vs. Lc, hits horizontal axis when Lc = likelihood:

ĥ(λ, Lc) = 0 if Lc = L[X, p̃(x|λ)] (121)

• λ⋆ is the MLE of λ. Thus ĥ(λ⋆, Lc) hits horizontal axis to the right of ĥ(λ, Lc).

¶ Preferences between estimates of λ:
• ĥ(λ⋆, Lc) > ĥ(0.9λ⋆, Lc) =⇒ λ⋆ ≻ 0.9λ⋆.
• ĥ(λ⋆, Lc) and ĥ(1.1λ⋆, Lc) cross at (L×, ĥ×):
◦ λ⋆ ≻ 1.1λ⋆ for Lc > L× and h < h×.
◦ 1.1λ⋆ ≻ λ⋆ else.
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¶ 500 repetitions:
• λ⋆ dominates 0.9λ⋆.
• Preferences reverse between λ⋆ and 1.1λ⋆.
• Normalized (h×, L×) in fig. 18.
• Center of cloud: (0.5, 0.2). Typical cross of robustness curves at:
◦ Lc about half of best-estimated value.
◦ ĥ about 20% of maximum robustness.

¶ Past and future data-generating processes:
•Data in this example generated from exponential distribution.
• Nothing in data to suggest that exponential distribution is wrong.
• Motivation for info-gap model, eq.(115), is that,
◦ while the past has been exponential,
◦ the future may not be.

• The robust-satisficing estimate of λ accounts not only for the historical evidence (the
sample X) but also for the future uncertainty about relevant family of distributions.
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5 Forecasting

¶ Source material: Yakov Ben-Haim, 2009, Info-gap forecasting and the advantage of sub-
optimal models, European Journal of Operational Research, 197: 203–213.

5.1 Preliminary Example: European Central Bank Interest Ra tes

Date Interest Implied
rate λ

1 Jan 1999 4.50
9 Apr 1999 3.50 0.778
5 Nov 1999 4.00 1.143
4 Feb 2000 4.25 1.063

17 Mar 2000 4.50 1.059
28 Apr 2000 4.75 1.056
9 Jun 2000 5.25 1.105

28 Jun 2000 5.25 1.000
1 Sep 2000 5.50 1.048
6 Oct 2000 5.75 1.045

11 May 2001 5.50 0.957
31 Aug 2001 5.25 0.955

Table 1: Interest rates for overnight loans at the European Central Bank (marginal lending facility).
Source: http://www.ecb.int/stats/monetary/rates/html/index.en.html
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Figure 19: ECB Interest Rates

¶ ECB overnight interest rates: table 1.
• First loans: 1999.
• Data through August 2001.

¶ El-Qaeda attacks in US: 11 Sept 2001.
• Predict next ECB interest rate?
• Asymmetric uncertainty: rate will go down.

¶ Questions:
• How to forecast the rate?
• How to assess confidence in the forecast?
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5.2 Info-Gap Forecasting: Formulation

5.2.1 The Estimated System and its Uncertainty

¶ N-dimensional system whose average behavior is:

yt = Atyt−1 (122)

Zero-mean, additive, random disturbances are ignored and all other inputs are incorporated
in the multi-dimensional state vector yt.

¶ Solution of eq.(122):

yT+k =

(
k∏

i=1

AT+i

)
yT (123)

where the product operator is lefthand matrix multiplication:
∏k

i=1AT+i = AT+k
∏k−1

i=1 AT+i.

¶ 1-Step and k-Step Forecast:
• From eq.(123): a k-step process is a 1-step process with coefficient matrix A(k) =

∏k
i=1AT+i.
• If the matrices AT+i belong to an info-gap model, U(h, Ã), then the product matrix A(k)

also belongs to an info-gap model, Uk(h, Ã
k
):

Uk(h, Ã
k
) =

{
A =

k∏

i=1

Ai : Ai ∈ U(h, Ã)
}
, h ≥ 0 (124)

• Conclusions about 1-step forecasts hold for k-step forecasts also.

¶ Info-gap uncertainty in transition matrices At. E.g.:

U(h, Ã) =
{
At, t > T : Ãij − hvij ≤ [At]ij ≤ Ãij + hwij, i, j = 1, . . . , N

}
, h ≥ 0 (125)

• Note asymmetric uncertainty if vij 6= wij .
• Note constant nominal transition matrix Ã.

5.2.2 Forecasting with Slope Adjustment

¶ “Slope-adjusted” predictor:
yst = Byst−1 (126)

where B is a constant matrix which we are free to choose. The question is: how to choose
B?

¶ Vector of average forecast errors for time t = T + k (ignoring zero-mean, additive,
random disturbances), based on knowledge of yT , is:

ηk(B,At) = ysT+k − yT+k =

(
Bk −

k∏

i=1

AT+i

)
yT (127)

• Should we really choose B 6= Ã?
• Judicious choice of B can reliably compensate for deviation of AT+i from Ã.
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5.2.3 Definition of the Robustness Function

¶ Requirement: satisfice the forecast error of mth element at time step k:

|ηk,m(B,At)| ≤ εc (128)

¶ Robustness:

ĥ(B, εc) = max

{
h :

(
max

AT+i∈U(h,Ã)

i=1, ..., k

|ηk,m(B,At)|
)
≤ εc

}
(129)

5.2.4 Evaluating the Robustness Function

¶ We evaluate the robustness for 1-step forecast.

¶ The robustness in eq.(129) can be written:

ĥ(B, εc) = max

{
h :


 max

AT+1∈U(h,Ã)

η1,m(B,AT+1)


 ≤ εc

and


 min

AT+1∈U(h,Ã)

η1,m(B,AT+1)


 ≥ −εc

}
(130)

¶ The 1-step forecast error for the mth state variable, from eq.(127), is:

η1,m(B,AT+1) =
N∑

n=1

[B − Ã]mnyT,n

︸ ︷︷ ︸
δ

−
N∑

n=1

[AT+1 − Ã]mnyT,n (131)

δ can be positive or negative and is controlled through the choice of the forecast matrix B.

¶ Define:

θc(h) = max
AT+1∈U(h,Ã)

N∑

n=1

[AT+1 − Ã]mnyT,n (132)

θa(h) = − min
AT+1∈U(h,Ã)

N∑

n=1

[AT+1 − Ã]mnyT,n (133)

• Contraction axiom implies that θa(0) = θc(0) = 0.
• Nesting axiom then implies that θa(h) ≥ 0 and θc(h) ≥ 0 and monotonic for all h ≥ 0.

¶ From eqs.(131)–(133), the robustness is:

ĥ(B, εc) = max {h : δ + θa(h) ≤ εc and − δ + θc(h) ≤ εc} (134)
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¶ Plotting the robustness.
• Define:

ε(h) = max {δ + θa(h), −δ + θc(h)} (135)

• ε(h) is the inverse of ĥ(B, εc):
Plot of h vertically vs. ε(h) horizontally is the same as a
plot of ĥ(B, εc) vertically vs. εc horizontally as in fig. 20.
• Fig. 20: The vertical axis is h or ĥ(B, εc), while the horizontal axis is ε(h) or εc.

✲

✻

ĥ(B,εc)✏✏✮

❇❇▼

δ−δ

δ+θa(h)

−δ+θc(h)

0
0

ĥ(B, εc)

εc

Figure 20: Robustness function based on eqs.(134) and (135).

• The discontinuous slope of ĥ vs εc can result in:
◦ Crossing robustness curves for different choices of B.
◦ Preference for B 6= Ã.

5.2.5 Crossing of Robustness Curves and the Advantage of Sub -Optimal Models

¶ 1-step forecast error, eq.(131):

η1,m(B,AT+1) =
N∑

n=1

[B − Ã]mnyT,n

︸ ︷︷ ︸
δ

−
N∑

n=1

[AT+1 − Ã]mnyT,n (136)

¶ Applies also to k-step error, with notational change.

¶ If At will be constant at Ã in the future, then the k-step prediction error for the mth state
variable is:

ηk,m(B, Ã) =
N∑

n=1

(
Bk − Ã

k
)

mn
yT,n

︸ ︷︷ ︸
ε⋆

(137)

• One is tempted to choose B = Ã in order to minimize the anticipated prediction error
ε⋆.
• Is this a good choice?

¶ Theorem: There exist sub-optimal models for 1-step forecasting which are more robust
than optimal models.
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5.3 Example: 1-Dimensional System

¶ The system. Consider a scalar system whose average behavior evolves as:

yt = λtyt−1 (138)

¶ Asymmetric uncertainty: λt tends to drift up.

U(h, λ̃) =
{
λt, t > T : 0 ≤ λt − λ̃

λ̃
≤ h

}
, h ≥ 0 (139)

¶ Slope-adjusted forecaster.
yst = ℓyst−1 (140)

¶ Robustness of k-step forecast with growth coefficient ℓ, defined in eq.(129):

ĥ(ℓ, εc) =





0 if εc ≤ (ℓk − λ̃
k
)yT


εc + ℓkyT

λ̃
k
yT




1/k

− 1 else
(141)
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ĥ(ℓ, εc)

εc/λ̃yT εc/λ̃
2
yT εc/λ̃

3
yT

Figure 21: Robustness vs. normalized forecast error, eq.(141), for ℓ = 1.05, 1.1, 1.15, 1.2 from
bottom to top curve. λ̃ = 1.05, yT = 1. k = 1 (left), 2(mid), 3(right).

¶ Numerical example, fig. 21.
• Lowest curve in each frame is nominal forecaster: ℓ = λ̃ = 1.05.
• ℓ increases by 0.05 with each higher curve.
• Horizontal axis: satisficed forecast error, εc, normalized to nominal forecast value, λ̃

k
yT .

• 1-step forecast (left frame):
◦ Slope-adjusted predictors are far more robust than the nominal predictor for essen-

tially all levels of forecast error εc.
◦ For instance, consider 5% fractional forecast error, εc/λ̃

k
yT = 0.05.

ĥ(1.05, εc) = 0.050 (bottom curve), and ĥ(1.2, εc) = 0.19 (top curve).
The slope-adjusted predictor is about 4 times more robust than the nominal predic-

tor.
• 2- and 3-step forecast (middle and right frames):
◦ robustness premium of slope-adjusted forecaster, ℓ > λ̃, compared to the nominal

predictor, ℓ = λ̃, becomes smaller as the horizon of the prediction increases.
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5.4 Robustness and Probability of Forecast Success

¶ 1-step forecast error of m variable, from eq.(127), is:

η1,m(B,AT+1) =
N∑

n=1

[B −AT+1]mn yT,n (142)

¶ Forecast is successful if:
|η1,m(B,AT+1)| ≤ εc (143)

• This can be written explicitly as:

−εc +
N∑

n=1

[B − Ã]mnyT,n ≤
N∑

n=1

[
AT+1 − Ã

]
mn
yT,n

︸ ︷︷ ︸
u

≤ εc +
N∑

n=1

[B − Ã]mnyT,n (144)

which defines the variable u.
• Recalling the definition of δ in eq.(131), the condition for forecast success in eq.(144)

becomes:
δ − εc ≤ u ≤ δ + εc (145)

¶ Probability of forecast success:
• F (u) is unknown cumulative probability distribution of u.
• Probability of forecast success with model B:

Ps(B) = F (δ + εc)− F (δ − εc) (146)

¶ Is robustness, ĥ(B, εc), a proxy for probability of success, Ps(B)?
Yes, in a wide range of situations.


