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Abstract

This paper develops a prescriptive approach to decision-making with severely uncertain infor-
mation, and explores risk-taking behavior, based on non-probabilistic set-models of information-gap
uncertainty. Info-gap models are well suited for representing uncertainty arising from severe lack of
information, and lead naturally to a decision strategy which maximizes the decision-maker’s immunity
to uncertainty, while also achieving no less than a specified minimum reward. We prove a “gambler’s
theorem” which quantifies the trade-off between reward and immunity-to-uncertainty. This trade-off
forces the decision-maker to gamble, but without employing a probabilistic framework. We present a
complementary theorem expressing the trade-off between immunity and windfall reward, and a fur-
ther result characterizing the antagonism between robustness to failure and opportunity for success.
Next we develop a measure of risk-sensitivity based on the idea of immunity-to-uncertainty, without
any probabilistic underpinning and without the assumptions of von Neumann-Morgenstern utility
theory. We prove a theorem which establishes the relation between a decision maker’s aversion to
uncertainty and the information which is available to him. Our final theorem establishes conditions in
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which the magnitude of the decision maker’s commitment of resources will increase with his fondness
for risk.

1 Introduction

The recognition of individual and organizational aversion to uncertainty underlies much of the analysis
of decision-making with incomplete information. In this paper we develop a prescriptive approach
to decision-making based on non-probabilistic set-models of uncertainty, whose axiomatic basis and
implications for inference have been studied in a previous paper [7]. Set-models of uncertainty,
and in particular convex information-gap models, have developed in recent decades for quantifying
severe uncertainty in a range of engineering disciplines. Info-gap models of uncertainty also match
a perception of uncertainty which is widespread in management and economics. The concept of
robust rationality developed here derives naturally from info-gap models, and generates a decision
algorithm which is particularly suited to situations severely lacking in information. In this paper we
study the risk-taking behavior of a decision maker whose inferences are based on info-gap models of
uncertainty.

The pedigree of probability in theories for decision under uncertainty is impeccable, but its
limitations are equally widely recognized. Not all decision makers obey probabilistic expected utility
theory [20]. Not all decision makers are able or willing to perform, either explicitly or implicitly,
probabilistic computations. Not all decision-making environments are informationally rich enough
to support probabilistic analysis.

Robustness to environmental indeterminacy underlies the decision methodology developed here:
specified goals are guaranteed (when possible) by the action selected, while at the same time the
decision-maker’s immunity to uncertainty is maximized. In this sense, the methodology developed
here is a specific implementation of Herbert Simon’s concept of “satisficing”. The decision method-
ology of robust rationality which is proposed here is formulated in section 3. Two basic functions are
introduced: the robustness function α̂(q, rc) expresses the greatest info-gap uncertainty consistent
with reward no less than rc if action q is adopted. The opportunity function β̂(q, rw) expresses the
least uncertainty consistent with reward possibly as great as rw if action q is adopted.

Info-gap models of uncertainty, which we will describe briefly in section 2, match Simon’s thought
in another way as well. An info-gap model is a family of nested sets C(α), α ≥ 0, in which the
“uncertainty parameter” α determines the order of nesting as well as the degree of information-gap
uncertainty. Simon writes that “In mathematical models incorporating rational and non-rational
aspects of behavior, the non-rational aspects can be imbedded in the model as the limiting conditions
that “bound” the area of rational adjustment.” [28, p.215]. The info-gap model is one possible
quantification of Simon’s “bounded rationality”.

In section 4 we present a “gambler’s theorem” which quantifies the trade-off between reward
and immunity-to-uncertainty and which is based on the robustness function α̂(q, rc). This trade-off
forces the decision-maker to gamble, but without requiring a probabilistic framework. This theorem
epitomizes the method of robust rationality, which is based on non-probabilistic info-gap models of
uncertainty. We also present a complementary theorem expressing the trade-off between immunity
and windfall reward, employing the opportunity function β̂(q, rw).

In section 5 we study the antagonism between immunity and opportunity: the more the decision
maker enhances his robustness to failure, the more he reduces his opportunity for unanticipated
success, and vice versa. Surprisingly, this antagonism is not universal, and we examine a necessary
and sufficient condition for it to occur.

In section 6 we explore a measure of risk-sensitivity based on the idea of immunity-to-uncertainty
as expressed by the robustness function and non-probabilistic info-gap models of uncertainty. The
concept of risk developed here is different from the classical Arrow-Pratt probabilistic theory. Our
results are obtained without any probabilistic underpinning, and without the assumptions of von
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Neumann-Morgenstern utility theory [24]: uncertainty, yes; probability, no. From the results of
section 4 we view the robustness function as expressing the trade-off between certainty and reward.
The robustness function α̂(q, rc) expresses not only the decision maker’s prior preferences, but also
the extent of his ignorance of the environment and his willingness to forgo certainty in his search
for obtaining reward. α̂(q, rc) expresses the decision maker’s attitude to the range of risky options,
and characterizes the wariness or boldness of his choices. Theorem 3 and its corollaries deal with
the relation between the decision maker’s aversion to risk and the information which is available to
him, and give quantitative expression to the following assertions about this measure of sensitivity
to uncertainty: (1) risk aversion increases with info-gap uncertainty, (2) risk aversion decreases with
reward, and (3) uncertainty is offset by reward. Theorem 4 and its corollaries establish conditions in
which the magnitude of the decision maker’s commitment of resources will increase with his fondness
for risk.

2 Information-Gap Models of Uncertainty

Our quantification of uncertainty is based on non-probabilistic information-gap models. An info-gap
model is a family of nested sets. Each set corresponds to a particular degree of uncertainty, according
to its level of nesting. Each element in a set represents a possible realization of the uncertain event.
Info-gap models, and especially convex-set models of uncertainty, have been described elsewhere, both
technically [3], non-technically [2] and axiomatically [5, 7]. Specific examples of the formulation of
info-gap models in a range of mechanical applications are found in [3], for seismic safety of structures
in [9], for environmental problems in [19], and for project management in [10].

Uncertain quantities are vectors or vector functions. Uncertainty is expressed at two levels by
info-gap models. For fixed scalar α the set C(α, ṽ) represents a degree of uncertain variability of the
uncertain quantity v around the centerpoint ṽ. The greater the value of α, the greater the range
of possible variation, so α is called the uncertainty parameter and expresses the information gap
between what is known (ṽ and the structure of the sets) and what needs to be known for an ideal
solution (the exact value of v). The value of α is usually unknown, which constitutes the second level
of uncertainty: the horizon of uncertain variation is unbounded.

Let ℜ denote the non-negative real numbers and let S be a Banach space in which the uncertain
quantities v are defined. An info-gap model C(α, ṽ) is a map from ℜ× S into the power set of S.

Info-gap models obey four axioms. Nesting: C(α, ṽ) ⊆ C(α′, ṽ) if α ≤ α′. Contraction: C(0, 0)
is the singleton set {0}. Translation: C(α, ṽ) is obtained by shifting C(α, 0) from the origin to ṽ.
Linear expansion: info-gap models centered at the origin expand linearly: C(β, 0) = β

αC(α, 0) for all
α, β > 0.

Even though info-gap models of uncertainty emerged in engineering — control theory [27], seis-
mic design of structures [12, 13], nuclear measurements [1], mechanical analysis [8] and mechanical
reliability [3] — they also match an intuition of uncertainty which is prevalent among economists
and management theorists. We will mention just a few examples. March analyzes individual and
organizational decision making and writes that “Uncertainty is a limitation on understanding and
intelligence.” [23, p.178]. Mack writes that “Uncertainty is the complement of knowledge. It is
the gap between what is known and what needs to be known to make correct decisions.” [22, p.1].
Galbraith, in discussing the design of complex industrial organizations, defines uncertainty as an
information gap, as “the difference between the amount of information required to perform the task
and the amount of information already possessed by the organization.” [16, p.5]. Laufer identifies
nine principles for managing projects in an era of uncertainty. He writes that one central principle
in project management is that, “in dynamic conditions, influencing the future is not just making
decisions early. It is more about the ability to reduce uncertainty and to minimize the impact of sur-
prises.” (emphasis in the original) [21, p.74]. Y.B. Choi writes that “Uncertainty is a state of doubt.
It describes an indeterminate relationship between us and the environment we face. . . . The very
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existence of uncertainty presupposes the need for judgement and decision making that will resolve
this state.” [11, p.27].

We will encounter several examples of info-gap models of uncertainty in this paper. Other in-
stances are found in the references.

3 Robust Rationality

We begin with a generic formulation of robust rationality, which we will illustrate in the next section
and in several subsequent examples. Let the vector q represent the decision-maker’s actions, which
incur a consequence depending upon q and upon an uncertain vector or vector function v belonging
to an info-gap model C(α, ṽ). The decision maker knows his scalar reward function, R(q, v), which
he could use, together with ṽ, to maximize his nominal reward. The reward function R(q, v) must be
construed very broadly, and can represent a performance requirement in vibrational analysis or other
engineering design problems [4], an economic or managerial goal [10], or any other scalar objective.
R need not be a von Neumann-Morgenstern utility function. The classical full-information strategy
is to choose an optimal action q̃ as:

R(q̃, ṽ) = max
q∈Q

R(q, ṽ) (1)

where Q is the set of available actions.
Now consider the robust strategy. The robustness is the greatest value of the uncertainty param-

eter for which the reward is no less than a least acceptable or “critical” value, rc. Define the set of
α-values for which the critical reward is guaranteed:

A(q, rc) =

{
α : min

v∈C(α,ṽ)
R(q, v) ≥ rc

}
(2)

The robustness function can now be expressed as:

α̂(q, rc) = max
α∈A(q,rc)

α (3)

If the set A(q, rc) is empty then the reward rc cannot be achieved at any level of uncertainty and
we define α̂(q, rc) = 0. When α̂(q, rc) is large then the decision maker is immune to a wide range
of variation, while if α̂(q, rc) is small then even small fluctuations can lead to reward less than the
critical value rc. Thus “bigger is better” for the robustness α̂.

The decision-maker’s optimal robust strategy is to choose an action q̂c(rc) which maximizes the
robustness:

α̂(q̂c(rc), rc) = max
q∈Q

α̂(q, rc) (4)

The logical structure of this decision algorithm as a “severe test” is discussed further in [7].
Robustness to uncertainty is important when we concentrate on the pernicious possibilities en-

tailed by unknown variation. However, variations can be propitious and surprises can be beneficient.
The dynamic flexibility which is so important for survival, as Rosenhead had stressed [26], thrives
on emergent opportunities. We can study this aspect of decisions based on robust rationality with
the aid of a function which is the logical complement of the robustness function α̂.

The “opportunity function” β̂ is constructed in a manner similar to α̂. Let rw represent the
decision maker’s wildest dreams of reward: a value of reward much greater than the critical reward
rc needed for bare survival. Naturally, dreams of success can be more or less wild, so rw is a variable
just as rc is a variable assessment of the decision maker’s minimum demands. Define the set of values
of the uncertainty parameter consistent with maximum reward no less than rw:

B(q, rw) =
{
α : max

v∈C(α,ṽ)
R(q, v) ≥ rw

}
(5)
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B(q, rw) is the analog of A(q, rc) in eq.(2). The uncertain future is propitious if even small varia-
tion can lead to unhoped-for success. The opportunity function is defined as the least uncertainty
consistent with maximum reward no less than rw:

β̂(q, rw) = min
α∈B(q,rw)

α (6)

If the set B(q, rw) is empty then the windfall reward rw cannot be achieved at any level of uncertainty
and we define β̂(q, rw) = ∞. If β̂(q, rw) is small, then small deviation from nominal or anticipated
conditions can lead to reward as large as rw. Uncertainty is propitious if even small fluctuations
can be favorable. On the other hand, if β̂(q, rw) is large, then reward as great as rw can occur only
at large deviation from the norm. For any value of the decision maker’s highest aspiration, rw, a
small value of β̂(q, rw) is preferable over a large value. Thus “big is bad” and “small is good” with
the opportunity function β̂(q, rw), exactly the reverse of the calibration of the robustness function
α̂(q, rc). β̂(q, rw) is the complement of the robustness function α̂(q, rc), defined in eq.(3). Both α̂
and β̂ are immunities: α̂ is the immunity to intolerable failure while β̂ is the immunity to sweeping
success. While A(q, rc) is bounded above by α̂(q, rc), we see that B(q, rw) is bounded below by
β̂(q, rw).

Instead of maximizing the immunity to failure, as in eq.(4), the decision maker may choose a
strategy which minimizes the immunity to opportunity, in which case the “optimal opportunity”
strategy is q̂w(rw) satisfying:

β̂(q̂w(rw), rw) = min
q∈Q

β̂(q, rw) (7)

where Q is the set of available actions.

4 Robustness vs. Reward: Gambler’s Theorems

The first theorem in this section expresses the trade-off between the minimum reward demanded
by the decision-maker, rc, and the robustness against uncertainty α̂(q, rc) which he can attain with
action-vector q. While this trade-off is not surprising, the theorem illuminates the type of gambling
involved in this decision procedure, even though no probabilistic information in employed. Also, it
shows how the decision maker may be led to modify his choice of rc as a result of the analysis. The
second theorem is complementary to the first, and expresses the trade-off between immunity and the
attainment of unanticipated windfall reward based on the opportunity function β̂(q, rw).

We now state what, in the logic of robust rationality, could be called a gambler’s theorem.

Theorem 1 Let C(α, ṽ) be an info-gap model, let R(q, v) be a uniformly continuous reward function,
and let r1 and r2 be two values of reward where r1 < r2. If α̂(q, r1) and α̂(q, r2) exist and are positive
for C(α, ṽ), then:

α̂(q, r1) > α̂(q, r2) (8)

That is, the robustness function is strictly monotonically decreasing on the set of reachable rewards.
Proofs are presented in the Appendix. Corollary m/n will denote the mth corollary of theorem n.

Corollary 1/1 Let C(α, ṽ) be an info-gap model, let R(q, v) be a uniformly continuous reward func-
tion, let r1 and r2 be two reward values where r1 < r2, and let q̂c(r1) and q̂c(r2) be the corresponding
maximally robust strategies. Then:

α̂(q̂c(r1), r1) > α̂(q̂c(r2), r2) (9)
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That is, the maximal robustness is strictly monotonically decreasing on the set of reachable rewards.
Theorem 1 and its corollary show the inexorable trade-off between reward and immunity-to-

uncertainty. The decision-maker must choose his position on the spectrum of this trade-off. This
theorem also shows that the decision-maker need not make an irrevocable prior choice of the critical
reward rc. Rather, he can adopt rc in light of the analysis of his robustness to ambient uncertainties.
For instance, he may find that he can demand greater reward without substantially increasing his
vulnerability to uncertainty. This (very pleasing) outcome of the analysis may well induce him to
demand greater profit. Alternatively, the decision maker may find that by slightly diminishing his
demanded reward he is able to greatly enhance his immunity to uncertainty. Again, the analysis
may lead the decision maker to modify his preference. In short, the robustness α̂(q, rc), viewed as
a function of critical reward, is a decision-support tool with which the decision-maker assesses his
options and their consequences. We illustrate this with the next example.

Example 1 Envelope-bound info-gap model. Consider a static production situation in which
the manufacturer must choose the quantity q which he will produce, and let us assume this to equal
the quantity sold. Let p(q) be the price per item, which depends on the quantity produced, and let
c(q) be the total cost of producing q items. The reward function is the profit: R(q) = p(q) q − c(q).

Suppose that the demand function p(q) is known exactly, but that the cost function c(q) varies in
an unknown manner within an envelope of unknown size. The nominal production-cost function c̃(q)
is known, and the shape of the envelope of uncertain variation of the actual cost function changes
in a known way with q. The envelope-bound info-gap model is suitable to describe this incomplete
prior information:

Ce(α, c̃) = {c(q) : |c(q)− c̃(q)| ≤ αψ(q)} , α ≥ 0 (10)

c̃(q) and ψ(q) are known, and we have a family of nested convex sets of possible production-cost
functions. ψ(q) determines the shape of the envelope within which c(q) varies in an unknown way,
while the uncertainty parameter α determines the size of the envelope. Employing eqs.(2) and (3),
the robustness of production-volume q becomes:

α̂e(q, rc) =
p(q) q − rc − c̃(q)

ψ(q)
(11)

As a specific case let the envelope function in the info-gap model of eq.(10) be linear: ψ(q) = q.
Let the nominal total cost function represent dis-economies of scale at large production volume in
the following way: c̃(q) = c1q − c2q

ξ where 0 < ξ < 1 and the cn’s are such that the nominal
cost c̃(q) is positive. Since c2 is positive and 0 < ξ < 1 we find that the cost per item increases
with production volume. Consider pure competition, so the demand function which the firm sees is
constant: p(q) = po, where po > c1. Eq.(11) is the robustness to uncertainty at demanded reward rc
and production volume q. The optimal volume is obtained by maximizing α̂(q, rc) on q, as in eq.(4),
with the following results:

q̂c(rc) =

(
rc

(1− ξ)c2

)1/ξ

, α̂(q̂c(rc), rc) = (po − c1)
(
1 + γrc

(ξ−1)/ξ
)

(12)

where γ is a constant depending on ξ, po, c1 and c2 but not on rc. q̂c(rc) is the optimal decision for
critical reward rc, and α̂(q̂c(rc), rc) is the corresponding maximal robustness.

The optimal robustness is shown in fig. 1 for ξ = γ = 0.5. One sees that, for large values of
demanded reward, the robustness decreases slowly, suggesting that if the decision maker is willing to
accept these low levels of immunity then he might as well “go to the limit” and choose q̂ corresponding
to a very large rc. On the other hand, the figure also shows rapidly increasing robustness at low
values of rc, implying that, if modest reward is acceptable, then the immunity can be substantially
enhanced by demanding small return.
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Figure 1: α̂(q̂, rc) versus rc, for example 1.

The following theorem and its corollary are the analogs of theorem 1 and corollary 1/1.

Theorem 2 Let C(α, ṽ) be an info-gap model, let R(q, v) be a uniformly continuous reward function,
and let r1 and r2 be two values of reward where r1 < r2. If β̂(q, r1) and β̂(q, r2) exist and are positive
for C(α, ṽ), then:

β̂(q, r1) < β̂(q, r2) (13)

That is, the opportunity function is strictly monotonically increasing on the set of reachable rewards.

Corollary 1/2 Let C(α, ṽ) be an info-gap model, let R(q, v) be a uniformly continuous reward func-
tion, let r1 and r2 be two reward values where r1 < r2, and let q̂w(r1) and q̂w(r2) be the corresponding
optimal opportunity strategies. Then:

β̂(q̂w(r1), r1) < β̂(q̂w(r2), r2) (14)

That is, the optimal opportunity function is strictly monotonically increasing on the set of reachable
rewards.

Example 2 Immunity to success and to failure. Let us continue example 1 and demonstrate
the use of the opportunity function β̂(q, rw) as a decision tool supplementary to the robustness
function α̂(q, rc).

q̂c(rc) denotes the action which maximizes the robustness, based on demanded critical reward rc,
given in eq.(12). Fig. 1 is a plot of α̂(q̂c(rc), rc) versus rc. In discussing fig. 1 we showed how the
decision maker may be induced to modify his preference for reward based on the varying steepness
of the α̂-curve. How does the opportunity function β̂(q, rw) vary over the same range of actions q
while rw is fixed? How might this influence the decision maker’s preferences?

β̂(q, rw) is a function of the decision maker’s “wildest dream” of reward rw and of his action q.
We can evaluate β̂(q, rw) at the action q̂c(rc) which optimizes the immunity to failure. One finds:

β̂(q̂c(rc), rw) = (po − c1)

[
−1 +

1− ξ

ξ

(
rw
rc

− 1

1− ξ

)
γrc

(ξ−1)/ξ
]

(15)

where ξ and γ are defined as in eq.(12). This is the immunity to success as a function of the decision
maker’s action which maximizes his immunity to failure. Recall that “big is bad” for β̂ while the
reverse is true for α̂.
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Figure 2: α̂(q̂c(rc), rc) (solid) and β̂(q̂c(rc), rw) (dash) versus rc. For example 2.

The solid line in fig. 2 shows the same optimal robustness curve as in fig. 1, together with the
opportunity function of eq.(15) (dashed line). As before, ξ = γ = 0.5 and rc varies from 0.1 to 1,
while the value of rw is 2, implying that the ratio rw/rc varies from 2 to 20.

At large values of rc we find that the value of β̂ is desirable (low) but α̂ is undesirable (also
low). In other words, when the immunity to failure is poor we find satisfyingly large opportunity of
success. However, at small values of rc we find β̂ increasing precipitously: by increasing the immunity
to failure we also increase the immunity to unhoped-for reward. In the low range of rc-values we
find that β̂ may restrain the decision maker’s inclination to enhance his robustness against failure
since by doing so he also relinquishes opportunities for sweeping success. In the high range of rc
values, α̂ restrains the decision maker since his vulnerability to failure is increasing. Thus α̂ and β̂
are antagonistic to one another and “pull” the decision maker in opposite directions. The decision
maker may use both functions to explore and contrast his preferences for immunity to failure and
opportunity for success.

5 Antagonistic Immunities

In this section we study some theoretical aspects of the phenomenon of “antagonistic immunities”
illustrated in example 2 and in fig. 2.

Definition 1 Antagonistic immunities. Robustness and opportunity functions α̂(q, rc) and β̂(q, rw)
are antagonistic at rewards rc and rw if:

∂β̂(q̂c(rc), rw)

∂rc
< 0 (16)

That is, under ‘antagonistic immunities’ the opportunity function decreases with increasing de-
manded no-failure reward rc, when evaluated at the optimal action for immunity to failure and at
fixed wildest-dream reward rw. What is ‘antagonistic’ is that the more the decision maker enhances
his robustness, the more he reduces his opportunity for unplanned success, and vice versa.

Robustness to failure is not invariably antagonistic to opportunity for success. In order to inves-
tigate this we define two functions:

µ1(α, q) = min
v∈C(α,ṽ)

R(q, v), µ2(α, q) = max
v∈C(α,ṽ)

R(q, v) (17)

The following properties are readily verified for these functions:
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1. µ1(0, q) = µ2(0, q) = R(q, ṽ), because C(0, ṽ) is the singleton set {ṽ}.
2. µ1(α, q) decreases monotonically in α and the robustness function α̂(q, r) is the solution (for

α) of:
µ1(α, q) = r (18)

3. µ2(α, q) increases monotonically in α and the opportunity function β̂(q, r) is the solution (for
β) of:

µ2(β, q) = r (19)

4. Viewing µ1(α, q) and µ2(α, q) as functions of α, properties 1–3 show that µ1 and µ2 are “weakly
symmetric” about the value R(q, ṽ): the plot of µ2 vs. α increases monotonically above R(q, ṽ) while
µ1 vs. α decreases monotonically below it. In other words, there exists an increasing function ζ(x)
such that ζ(0) = 0 and:

µ2(α, q) = R(q, ṽ) + ζ [R(q, ṽ)− µ1(α, q)] (20)

It sometimes happens that ζ(x) = x, implying that µ1 and µ2 are “strongly symmetric” about
R(q, ṽ). This will be illustrated in subsequent examples.

Let ζ(x) denote the inverse of the function ζ(x). That is, ζ(ζ(x)) = x. We can now state the
following useful lemma:

Lemma 1 The opportunity and robustness functions are related as:

β̂(q, r) = α̂
(
q, R(q, ṽ)− ζ[r −R(q, ṽ)]

)
(21)

The immediate use of this lemma is for investigating the partial derivative in eq.(16) of the
definition of antagonistic immunities. For notational convenience define the point in (q, r)-space
P = (q̂c(rc), R[q̂c(rc), ṽ]− ζ(r∗)) where r∗ = rw −R[q̂c(rc), ṽ]. After some manipulation one finds:

∂β̂(q̂c(rc), rw)

∂rc
=

 ∂β̂(q, rw)

∂q

∣∣∣∣∣
q̂c(rc)

T

∂q̂c(rc)

∂rc
(22)

=


∂α̂(q, r)

∂r︸ ︷︷ ︸
<0

∣∣∣∣∣∣∣∣
P

∂R(q, ṽ)

∂q

∣∣∣∣
q̂c(rc)

(
1 +

dζ(x)

dx

∣∣∣∣∣
r∗

)
︸ ︷︷ ︸

>0

+
∂α̂(q, r)

∂q

∣∣∣∣
P



T

∂q̂c(rc)

∂rc

(23)

The quantity denoted ‘< 0’ is negative by virtue of theorem 1, and the term marked ‘> 0’ is positive
because ζ and hence ζ increase monotonically. Eq.(23) provides a means of testing for antagonistic
immunities.

Example 3 Scalar action, q. If ∂q̂c(rc)/∂rc > 0 then the decision maker’s maximally robust action
increases with his demanded critical reward. This need not be the case, but when it does hold it
implies a particular “coherence” between action and expectation. This coherence occurs for instance
in eq.(12) of example 1.

When the action is a scalar and when the optimal action q̂c(rc) is “coherent” with rc, then eq.(23)
implies that the robustness and opportunity functions are antagonistic if and only if:

∂R(q, ṽ)

∂q

∣∣∣∣
q̂c(rc)

<
−1(

1 + dζ(x)
dx

∣∣∣∣
r∗

) ∂α̂(q, r)/∂q

∂α̂(q, r)/∂r

∣∣∣∣
P

(24)

where r∗ and P are defined as before. This inequality defines the region of antagonistic immunities
in the (rc, rw) plane. It not infrequently happens that ζ(x) = x, in which case dζ/dx = 1, further
simplifying (24).
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Example 4 Strong symmetry of µ1 and µ2. The function ζ(x) introduced in eq.(20) is not infre-
quently just ζ(x) = x, which simplifies eqs.(21), (23) and (24). This occurs in example 2. It also
occurs if the reward function is R(q, v) = vT q while the uncertainty is represented by an ellipsoidal
info-gap model:

C(α, ṽ) =
{
v : (v − ṽ)TW (v − ṽ) ≤ α2

}
, α ≥ 0 (25)

where W is a real, symmetric, positive definite matrix. In this case one finds from eq.(17) that the
functions µn(α, q) are:

µn(α, q) = ṽT q ± α
√
qTW−1q (26)

from which it results that ζ(x) = x.

6 Robust Risk-Sensitivity

The lexical definition of risk is a “possibility of loss or injury”, a “peril”, a “dangerous element or
factor” [29]. The etymological origin of the word ‘risk’ is doubtful, though it may come from earlier
words meaning cliff, rock or submarine hill [30]. It is evident that the intuitive pre-scientific concept
of risk can be quantified in many ways.

In this section we present a formal definition of robust risk-sensitivity as well as several general
results and two more examples. The concept of risk-aversion developed here is non-probabilistic and
distinct from the classical Arrow-Pratt theory [18, 25]. Nonetheless, we will show that robust risk
sensitivity has interpretations and implications which are consistent with reasonable anticipations
from such a theory.

Probabilistic quantification of risk-aversion is feasible in those situations which are informationally
rich enough to support probabilistic information. In this paper we consider severe uncertainty as
expressed by a non-probabilistic information gap. In this context risk is the potential for lost reward,
and the aversion to risk is quantified as an operational sensitivity to environmental uncertainty.
The actions of a risk-averse decision maker are strongly constrained by the ambient uncertainty.
Conversely, risk-fondness is expressed by the decision maker being able to demand large reward even
in the face of a large information gap, implying a wider range of available options. In our context,
the aversion to or proclivity for risk is not absolute, but rather a property which emerges in the
comparison between different decision makers or alternative strategies.

We will deal with multiple decision makers, whose robustness functions and maximal-robustness
actions are denoted α̂i(q, r) and q̂i(r). The optimal robustness function of decision maker-i is
α̂i(q̂i(r), r). The robustness functions of different decision makers differ because either they have
different reward functions, or they use different info-gap uncertainty models, or both.

Definition 2 Robust risk fondness is measured by the robustness function α̂(q, r).

Given two decision makers with robustness functions α̂1(q, r) and α̂2(q, r), we will say that decision
maker-2 has greater robust risk fondness than decision maker-1 if:

α̂1(q, r) ≤ α̂2(q, r) (27)

Likewise, relation (27) means that decision maker-1 has greater robust risk aversion than decision
maker-2. The comparison may be applied to all values of r and q, or over a specified domain.

Definition 2 leads immediately to the following result for the optimal robustness functions of two
decision makers.

Lemma 2 If two decision makers have the same set of available actions, Q, then greater robust
risk fondness implies greater robust risk fondness at the maximal-robustness action of each decision
maker. That is, if eq.(27) holds throughout Q, then:

α̂1(q̂1(r), r) ≤ α̂2(q̂2(r), r) (28)
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The two decision makers may very well have totally different optimal actions: q̂1(r) ̸= q̂2(r).
Nonetheless, if decision maker-2 has greater robust risk fondness than decision maker-1, then lemma 2
asserts that this is true also when each adopts his own optimal action.

The basic decision function in robust rationality, and the most important characterization of the
decision maker and his relation to the uncertain environment, is the robustness function, α̂(q, rc),
defined in eq.(3). The first gambler’s theorem, theorem 1, states that, for fixed action q, the robustness
decreases monotonically with the critical reward. Corollary 1/1 states that the robustness function
evaluated at the optimal action, α̂(q̂c(rc), rc), is also a monotonically decreasing function in rc.

The decreasing robustness function manifests the trade-off between robustness and reward: the
decision maker’s immunity to uncertainty decreases as greater reward is demanded, as illustrated
schematically in fig. 3. Robustness curves such as those in fig. 3 characterize the decision maker
as a gambler: courageous or cautious depending on whether he makes great or small demands on
the environment, in face of specified vulnerability to uncertainty. The shape and position of the
robustness-vs.-reward curve expresses one aspect of the decision maker’s sensitivity to risk, as we
will now explain.
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Figure 3: Maximal robustness versus demanded reward for two different decision-makers. Illustrating
robust risk sensitivity.

The rc axis in fig. 3 is labelled ‘modest’ near the origin and ‘demanding’ away from the origin, and
the α̂ axis is labelled ‘vulnerable’ and ‘immune’ for small and large values of robustness, respectively.
Consider two decision makers, whose robustness functions are shown in the figure: decision maker-2
is relatively immune to uncertainty even when he makes great demands on the environment, while
decision maker-1 is relatively vulnerable to uncertainty even when he makes modest demands for
reward. The decision makers have different robustness functions because they have different reward
functions or different uncertainty models or both.

Decision-maker-2 will look speculative, audacious or daring in the eyes of decision maker-1, while
decision maker-1 will appear conservative, cautious, or even timid in decision maker-2’s eyes. Consider
for instance the arrows rising from the point labeled r on the rc axis. For this value of demanded
reward the upper decision maker is relatively immune to uncertainty, while the lower decision maker
is relatively vulnerable. In other words, α2 > α1 so decision maker-2 can tolerate more uncertainty
and is less averse to risk than decision maker-1.

Similarly, consider the arrows stemming from the robustness α on the α̂ axis of fig. 3. At this level
of uncertainty decision maker-1 is able to demand only a low guaranteed return, r1, while decision
maker-2 can demand greater return r2. As we will see in connection with theorem 4, this implies
that, under particular conditions, decision maker-1 is willing to make a smaller commitment of his
resources than decision maker-2. Again, decision maker-1 is showing himself more timid in the face
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of uncertainty than decision maker-2.
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Figure 4: Maximal robustness versus optimal action for two different decision-makers.

It is instructive to consider the variation of robustness α̂ versus the optimal action q̂ (which
for now we consider to be a scalar rather than a vector, for simplicity of exposition). Referring to
eqs.(2)–(4) we see that, for each choice of the critical reward rc, there is an optimal action q̂c(rc),
which we will assume to be unique. So, the rc-axis of fig. 3 can be transformed to a q̂-axis, as in
fig. 4. Sometimes the action can be interpreted as a commitment of money, time, space or some
other resource. The action-axis varies from ‘wary’ at small values of q̂ to ‘rash’ for large values.
Following the arrows from fixed robustness α, one finds q2 > q1 which means that decision maker-2
is able to make a greater commitment than decision maker-1. Conversely, following the arrows from
fixed action q, decision maker-2 enjoys greater immunity to uncertainty than decision maker-1 since
α2 > α1. Again we see that the robustness α̂ serves as a measure of the decision maker’s sensitivity
to uncertainty and his willingness to take actions which other decision makers would view as either
too risky or too timorous.

To summarize the discussion of figs. 3 and 4, we can say that greater robustness to uncertainty
implies a willingness for greater commitment of resources at the same level of ambient uncertainty.
Equivalently, greater robustness enables the decision maker to demand greater returns from the
environment. In other words, increments of robustness-to-uncertainty correspond to increments in
fondness for risk. In either fig. 3 or 4, the increment α2−α1 can be viewed as a “robustness premium”
which decision maker-2 enjoys over decision maker-1. Likewise, in fig. 3 decision maker-2 is able to
demand a “reward premium”, r2−r1, at the same level of immunity to uncertainty. In fig. 4, decision
maker-2 is willing to make a greater commitment of resources than decision maker-1. We can use
the robustness premium or the reward premium or the commitment premium to compare the risk
sensitivities of two decision makers.

The following theorem and its corollaries quantify and illuminate the meaning of these measures
of risk sensitivity.

Theorem 3 Given two decision makers with the same set Q of available actions, with uniformly
continuous reward functions R1(q, v) and R2(q, v), with info-gap models of uncertainty C1(α, ṽ) and
C2(α, ṽ), and with finite robustness functions α̂1(q, r) and α̂2(q, r). If:

(1 + δ)R1(q, v) ≤ R2(q, v) (29)

for some δ ≥ 0 and for all q ∈ Q and all v in the range of the info-gap models, and if:

C2[(1 + ε)α, ṽ] ⊆ C1(α, ṽ) (30)
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for some ε ≥ 0 and for all α ≥ 0,
then:

(1 + ε)α̂1(q, r) ≤ α̂2[q, (1 + δ)r] ≤ α̂2(q, r) (31)

with strict inequality on the right if δ > 0, unless both robustness functions are identically zero.

Eq.(31) implies that decision maker-2 has greater risk-fondness than decision maker-1:

α̂1(q, r) ≤ α̂2(q, r) (32)

In particular, if either δ > 0 or ε > 0, then decision maker-2 has strictly greater robust risk-fondness
than decision maker-1:

α̂1(q, r) < α̂2(q, r) (33)

unless both robustness functions are identically zero.
This theorem contains two special cases: (1) identical reward function and nested info-gap models,

and (2) ranked reward functions and identical info-gap models. These special cases have particularly
important interpretations, so we state them as corollaries 1/3 and corollaries 2/3, without proof.

The extent of our information about uncertain events is represented by an info-gap model. The
relation “more information” in one formulation than another is expressed by set-inclusion of the
corresponding info-gap models as in relation (30). Model C2 is more informative than model C1

because the former constrains the uncertain quantity more tightly than the latter. In C2(α, c̃) the
information gap is smaller than in C1(α, c̃). These considerations lead directly to the following
corollary to theorem 3.

Corollary 1/3 Robust risk-aversion increases with uncertainty. If two decision makers have the
same set of available actions, the same uniformly continuous reward function, and nested info-gap
models as in eq.(30), then decision maker-1 has greater robust risk-aversion than decision maker-2.

The second special case of theorem 3 can be interpreted to mean that, other things being equal,
a decision maker’s aversion to risk is moderated by the utility he stands to enjoy. The second special
case can be expressed as:

Corollary 2/3 Robust risk-aversion decreases with reward. If two decision makers have the same
set of available actions, the same info-gap model of uncertainty and ranked uniformly continuous
reward functions as in eq.(29), then decision maker-2 has lower robust risk-aversion than decision
maker-1.

Another interesting corollary to theorem 3 is:

Corollary 3/3 Uncertainty is offset by reward. Given the conditions of theorem 3, there is a new
reward function R∗

1(q, v) where R∗
1(q, v) ≥ R1(q, v) and such that, if R1(q, v) is replaced by R∗

1(q, v),
then:

α̂2(q, r) < α̂∗
1(q, r) (34)

where α̂∗
1(q, r) is the robustness function of decision maker-1 based on reward function R∗

1(q, v).

In other words, the greater uncertainty of decision maker-1 (relation (30)) can be offset by increasing
his reward, thereby causing his risk-fondness to exceed that of decision maker-2 (that is, reversing
relation (32)).
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Example 5 Risk aversion and plant size. Fuller and Gerchak [15] study probabilistic risk aversion
and the choice of plant size. Their nominal profit function is:

R(q) = qRe−δL(q) − c(q) (35)

where q is the plant size, R is the revenue per unit plant size, δ is the discount rate, L(q) is the
construction lead time and c(q) is the cost of a plant of size q.

Now, instead of a probabilistic uncertainty model, we use an info-gap model. Consider severe lack
of information about the discounted revenue per unit plant, whose nominal value is ṽ(q) = Re−δL(q).
Instead of eq.(35), the uncertain profit function is:

R(q, v) = qv(q)− c(q) (36)

where v(q) is unknown. We have limited prior information which constrains the rate of variation of
v(q). One form which this prior knowledge can take is spectral information expressed as bounds on
Fourier coefficients. The uncertain function is represented:

v(q) = ṽ(q) +
n2∑

n=n1

βn [sinnπq + cosnπq] (37)

where ṽ(q) is known and the Fourier coefficients βn are uncertain. This type of info-gap model of
uncertainty is quite common in technological applications. A single Fourier coefficient is used for
each mode when the amplitude of each mode is important, but the phase is less so. When both
amplitude and phase are important one can introduce two uncertain coefficients for each mode.

Let N = n2 − n1 + 1, and let σ(q) and γ(q) be N -vectors of the sines and cosines, respectively,
appearing in the sum in eq.(37). Let β be the N -vector of Fourier coefficients. Now we can write
eq.(37) more succintly:

v(q) = ṽ(q) + βT [σ(q) + γ(q)] (38)

The Fourier ellipsoid-bound info-gap model for uncertainty in the discounted revenue is:

C(N)(α, ṽ) =
{
v(q) = ṽ(q) + βT [σ(q) + γ(q)] : βTWβ ≤ α2

}
, α ≥ 0 (39)

where N is the number of modes in the uncertainty model and W is a real, symmetric, positive
definite matrix. After some manipulation one finds the robustness function to be:

α̂(q, rc) =
1√

[σ(q) + γ(q)]T W−1 [σ(q) + γ(q)]

(
Re−δL(q) − rc + c(q)

q

)
(40)

Now we will illustrate the use of corollary 1/3. For simplicity, let the matrix W in eq.(39) be the
identity matrix and let n1 = 1 and n2 = N in eq.(37). The robustness function, eq. (40), becomes:

α̂(q, rc) =
1√∑N

1 (sinnπq + cosnπq)2

(
Re−δL(q) − rc + c(q)

q

)
(41)

It is readily seen that C(N) is a more informative uncertainty model than C(N+1), since:

C(N)(α, ṽ) ⊂ C(N+1)(α, ṽ) (42)

That is, the uncertainty model C(N)(α, ṽ) constrains the uncertainty more tightly than C(N+1)(α, ṽ).
Now, from eq.(41) we see that the robustness function decreases with increasing dimension N . In

other words, as stated by corollary 1/3, robust risk aversion increases with uncertainty. Furthermore,
eq.(41) shows the marginal increase in risk aversion resulting from a marginal enlargement of the
info-gap model through increasing the value of N .
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The following theorem establishes a relationship between risk aversion and the size of a decision
maker’s commitment.

Theorem 4 Consider two decision makers with the same set Q of available actions, and whose
robustness functions α̂1(q, r) and α̂2(q, r) both reach unconstrained maxima on Q. The actions are
represented by an N -vector q whose elements are denoted qn, n = 1, . . . , N . Suppose that, for some
value r of the critical reward, both robustness functions are positive, smooth and continuous for all
q ∈ Q, that α̂2(q, r) is uni-modal in qn at this r for some particular n, and that α̂1(q, r) and α̂2(q, r)
at this r are related as:

α̂1(q, r) = ϕ(q)α̂2(q, r) (43)

for all q ∈ Q, where ϕ(q) is a positive real function. Then, for this value of r, the nth component
q̂1,n(r) of the maximum-robustness action vector for decision maker-1 is less than the nth component
q̂2,n(r) of the maximum-robustness action vector for decision maker-2 if and only if ϕ(q) is decreasing
in qn at q̂1(r). That is:

q̂1,n(r)
<
=
>

q̂2,n(r) if and only if
∂ϕ(q)

∂qn

∣∣∣∣
q=q̂1(r)

<
=
>

0 (44)

The basic import of theorem 4 is that greater robust risk-fondness, by itself, does not necessarily
imply greater optimal action. If ϕ(q) in eq.(43) is less than unity, then decision maker-1 is more risk-
averse than decision maker-2. The theorem establishes that this does not guarantee that decision
maker-1’s actions will take smaller magnitude than those of decision maker-2. This by itself is
not surprising since the action vector q may contain decisions, such as the choice of a geometrical
dimension or the time of an event, for which ‘big’ does not imply any subjectively greater commitment.
Hence, the interesting part of theorem 4 is that it establishes a simple criterion by which to determine
when greater risk-aversion does imply smaller values of the optimal actions. We elaborate this in the
following corollaries.

Corollary 1/4 With the conditions of theorem 4 and also that α̂1(q, r) is uni-modal in qn at this r,
the maximum-robustness actions of the two decision makers are ranked according to the logarithmic
derivatives of their optimal robustness functions:

q̂1,n(r)
<
=
>

q̂2,n(r) if and only if 0
<
=
>

∂ ln α̂2(q, r)

∂qn

∣∣∣∣
q=q̂1(r)

(45)

Equivalently:

q̂1,n(r)
<
=
>

q̂2,n(r) if and only if 0
>
=
<

∂ ln α̂1(q, r)

∂qn

∣∣∣∣
q=q̂2(r)

(46)

If a decision maker’s robustness function achieves unconstrained maxima on the set of available
actions, then the logarithmic derivatives of the robustness, ∂ ln α̂(q, r)/∂qn, equal zero at the opti-
mal action. Consequently, we can roughly paraphrase corollary 1/4 as follows: greater logarithmic
derivative of the robustness implies greater optimal action.

Example 6 Risk aversion and plant size: continued. To illustrate the use of corollary 1/4 let us
continue example 5 with the following numerical formulation. Let c(q) = a

√
q and L(q) = b1q + b0,

so the lead-time increases with b1. The parameters of the nominal discount rate are δ = 0.08 and
Re−δb0 = 3a. Fig. 5 illustrates that the robustness functions are indeed uni-modal, as required by
theorem 4. (Note however that the lower function is not concave. Concavity, which is a stronger
condition than uni-modality, is not required by theorem 4.) Fig. 6 shows the logarithmic derivative
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Figure 5: Robustness versus the action, for example 6. rc/a = 25.
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Figure 6: Logarithmic derivative of the robustness at the optimal action for b1 = 0.08, versus b1, for
various values of rc/a. For example 6

of the robustness function versus the lead-time parameter b1. (Recall that the construction lead-time
increases linearly with b1.) The three curves are for different values of the critical reward rc/a. For
each curve, the derivative is evaluated at the optimal action q̂ for lead-time parameter b1 = 0.08. So
of course the derivatives vanish at b1 = 0.08. (The optimal actions at b1 = 0.08 for these three values
of rc are q̂ = 34.11, 44.27 and 53.21 for rc/a = 15, 25 and 35, respectively.)

We see from fig. 6 that the derivatives are negative for longer construction lead-time (b1 > 0.08),
and positive for shorter lead-time. The interpretation of this sign-trend is provided by corollary 1/4:
the optimal action (optimal plant size) decreases with lead time. For example, eq.(45) states that
q̂1 < q̂2 if and only if 0 < ∂ ln α̂2/∂q at q = q̂1. If decision maker-1 is considering a lead-time
coefficient of b1 = 0.08 while decision maker-2 is considering a different lead-time, then negative
derivatives of decision maker-2’s robustness, evaluated at decision maker-1’s optimal action, imply
lower optimal plant size for decision maker-2. Likewise, positive derivatives imply greater optimal
plant size for decision maker-2.

It is also interesting to note that, at large lead-times, the magnitude of the derivative increases
with the critical reward. That is, demanding greater return ultimately forces much smaller investment
when the lead-time is large, because of the decision maker’s aversion to risk.

We have already explained that theorem 4 shows that enhanced robust risk-aversion by itself does
not imply reduced optimal action. However, the following corollary establishes a condition which, in
addition to robust risk-aversion, does imply ranking of the optimal actions.
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Corollary 2/4 With the conditions of theorem 4, greater robust risk-fondness implies greater optimal
action if and only if the robustness-increment is increasing in q at the risk-averse optimum. That is,
given that ϕ(q) < 1, then:

q̂1,n(r)
<
=
>

q̂2,n(r) if and only if
∂ [α̂2(q, r)− α̂1(q, r)]

∂qn

∣∣∣∣
q=q̂1(r)

>
=
<

0 (47)

7 Summary and Discussion

In this paper we have presented a methodology for decisions with severe uncertainty which is concep-
tually quite different from classical probabilistic thought, and we have explored risk-taking behavior
when using this methodology. The use of info-gap uncertainty-models for quantifying severe uncer-
tainty may be motivated by the nature of that uncertainty itself: a stark lack of data, an “information
gap” between what is known and what needs to be known in order to make an optimal decision.
Severe uncertainty arises in strategic planning, in advanced engineering design, in micro-economics
and other areas. When information is very sparse one is hard put to verify a probabilistic model,
while an info-gap model can be formulated as a family of nested sets consistent with available data.
Once the info-gap model is adopted, the desire for uncertainty-avoidance leads naturally to the search
for strategies which maximize the decision-maker’s immunity to uncertainty, while at the same time
guaranteeing a specified minimum reward. This strategy, implemented with info-gap models, is what
we have called ‘robust rationality’.

In section 4 we proved a “gambler’s theorem” which quantifies the trade-off between reward and
immunity-to-uncertainty. This trade-off forces the decision-maker to gamble, but without requiring
any probabilistic thinking on his part. This theorem epitomizes the method of robust rationality,
which is based on non-probabilistic set-models of information-gap uncertainty. Also, this theorem
highlights the robustness function α̂(q, rc) as a decision tool, showing how the analysis of uncertainty
may lead the decision maker to modify his preferences for reward and immunity. Theorem 2 is
complementary to theorem 1, and uses the opportunity function β̂(q, rw) to express the trade-off
between certainty and windfall reward.

In section 5 we explored the antagonism between robustness-to-failure and opportunity-for-
success. Eq.(23) establishes the basis for investigating whether this antagonism occurs.

In section 6 we employed the robustness function as a measure of risk-sensitivity. α̂(q, r) is
the greatest gap in the decision maker’s information which is consistent with attaining reward no
less than r, if he implements the strategy q. The optimal strategy, q̂c(r), maximizes the decision
maker’s immunity, and α̂(q̂c(r), r) is the greatest possible robustness. The character of a decision
maker as either a wary or a reckless gambler is embedded in his robustness function. The robustness
functions of two different decision makers reveal the different degrees to which these individuals
will thwart uncertainty to make demands on the environment. The robustness function expresses
both the decision maker’s prior preferences and the extent of his ignorance of the environment. The
robustness function quantifies the trade-offs between certainty and reward which are entailed by the
decision maker’s reward function and uncertainty model. Theorem 3 and its corollaries illuminate
some properties of the robust measure of risk sensitivity. Theorem 4 and its corollaries establish
conditions in which the magnitude of the decision maker’s commitment of resources will increase
with his fondness for risk.

The relation between the concept of risk-sensitivity developed here and the classical ideas of
risk-aversion developed by Arrow, Pratt and others in economics can be understood in terms of the
underlying models of uncertainty. An uncertainty model — whether probabilistic, fuzzy, info-gap,
or whatever — generates a decision theory. A decision theory, in turn, enables characterization of
a decision maker. Thus the Arrow-Pratt assessment of risk aversion employs the von Neumann-
Morgenstern utility function, which itself is a probabilistic entity. The risk-assessment discussed in
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this paper employs the robustness function which is meaningful in the context of info-gap modelling
of uncertainty. From the axiomatic point of view, these approaches are incompatible [7]. From the
practical point of view, nothing prevents an analyst from adopting whatever methodology matches
the type and extent of information available. In fact, hybridization is even possible, as explored
elsewhere [6].

Uncertainty appears in many different guises, and the methods for its modelling and management
must show the same versatility. The implication for decisions under uncertainty is that no single
concept, method or theory will match all decision problems fraught with uncertainty. One should
expect a plethora of fundamentally conflicting tools, combined or selected in each specific application
according to the nature of the information and the demands of the analysis.

The engineering experience of recent decades has shown a blossoming of non-probabilistic theories
of uncertainty, which have grown from the exigencies of a range of fundamentally different types and
tendencies of uncertain phenomena. Fuzzy logic is the most popular deviation from probabilistic
orthodoxy, and it has spawned a litter of fruitful variations in the form of ‘possibility theory’, ‘neces-
sity theory’, and other axiomatic variations on Kolmogorov’s probability [14]. The neural network
analog of biological systems has also gained great popularity due to its dexterity in absorbing and
exploiting new information in highly unstructured environments [17]. Convex models of uncertainty,
and the more general information-gap set-models of uncertainty, are another quite radical departure
from the probabilistic tradition.

In this paper we have developed concepts for decision and analysis based on the idea of immunity-
to-uncertainty. Without impeaching either classical probabilistic tools or more modern developments
such as fuzzy logic, we have developed a non-probabilistic approach based on information-gap models
of uncertainty which may fit the needs of analysts and decision makers in some situations. Set-models
of uncertainty, and in particular info-gap models such as convex models, are apposite in decision-
environments plagued by severe lack of information.

8 Appendix: Proofs.

The following lemma will be used in the proofs of theorems 1 and 3.

Lemma 3 If R(q, v) is uniformly continuous and if the robustness function α̂(q, r) exists (that is, it
is finite), then:

min
v∈C(α̂(q,r),ṽ)

R(q, v) = r (48)

That is, if α̂(q, r) is the robustness for critical reward r, then the minimal reward on an info-gap
model of size α̂(q, r) equals r.

Proof of lemma 3. By eq.(2):

min
v∈C(α̂(q,r),ṽ)

R(q, v) ≥ r (49)

Suppose however that strict inequality holds:

min
v∈C(α̂(q,r),ṽ)

R(q, v) > r (50)

Since R(q, v) is uniformly continuous and C(α, ṽ) is a family of nested sets, there is a β > α̂(q, r)
such that:

min
v∈C(β,ṽ)

R(q, v) > r (51)

But this is a contradiction, since α̂(q, r) is the maximum of the set A(q, r). Thus, instead of (49) we
have the equality in eq.(48) which proves the lemma.
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Proof of theorem 1. (1) Since α̂(q, r1) and α̂(q, r2) exist and are positive, the α-sets A(q, r1)
and A(q, r2) are bounded and not empty. Let α ∈ A(q, r2), which means that:

min
v∈C(α,ṽ)

R(q, v) ≥ r2 > r1 (52)

From this we conclude that the same α also belongs to A(q, r1). Hence:

A(q, r2) ⊆ A(q, r1) (53)

α̂(q, rn) is the least upper bound of A(q, rn), so (53) implies that:

α̂(q, r1) ≥ α̂(q, r2) (54)

(2) By lemma 3 we know that:

min
v∈C(α̂(q,r1),ṽ)

R(q, v) = r1 (55)

By a similar argument we conclude that:

min
v∈C(α̂(q,r2),ṽ)

R(q, v) = r2 (56)

(3) Now suppose that, in addition to relation (54), the following holds:

α̂(q, r1) = α̂(q, r2) (57)

But, by the supposition of the theorem, the righthand sides of eqs.(55) and (56) are different (r1 < r2).
Hence the lefthand sides of these equations must also differ. Thus α̂(q, r1) and α̂(q, r2) can not be
equal and the supposition in (57) is false and the strict inequality in relation (8) results from (54).

Proof of corollary 1/1. By theorem 1:

α̂(q̂c(r2), r1) > α̂(q̂c(r2), r2) (58)

But, by the definition of maximum robustness, eq.(4):

α̂(q̂c(r1), r1) ≥ α̂(q̂c(r2), r1) (59)

The last two relations prove the desired result.
Proof of theorem 2. Since ζ(x) is an increasing function, theorem 2 results immediately from

lemma 1 (eq.(21)) and theorem 1 (eq.(8)).
Proof of corollary 1/2. By theorem 2:

β̂(q̂w(r2), r1) < β̂(q̂w(r2), r2) (60)

But, by the definition of optimum opportunity, eq.(7):

β̂(q̂w(r1), r1) ≤ β̂(q̂w(r2), r1) (61)

The last two relations prove the desired result.
Proof of lemma 1. Eq.(19) states that:

µ2(β̂(q, r), q) = r (62)

From eq.(20) we can replace the lefthand side of eq.(62) as:

R(q, ṽ) + ζ
[
R(q, ṽ)− µ1(β̂(q, r), q)

]
= r (63)
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Re-arranging and inverting the function ζ leads to:

µ1(β̂(q, r), q)) = R(q, ṽ)− ζ(r −R(q, ṽ)) (64)

Now, eq.(18) states that:
µ1(α̂(q, r), q) = r (65)

Comparing this with eq.(64) we obtain relation (21).
Proof of lemma 2. Since decision maker-2 is fonder of risk than decision maker-1 throughout

Q, eq.(27) holds at the optimal action for decision maker-1:

α̂1(q̂1(r), r) ≤ α̂2(q̂1(r), r) (66)

Eq.(4) states that the optimal action q̂2(r) maximizes the robustness function for decision maker-2,
so:

α̂2(q̂1(r), r) ≤ α̂2(q̂2(r), r) (67)

Combining the last two relations concludes the proof.
Proof of Theorem 3. From lemma 3 we know that:

min
v∈C1(α̂1(q,r),ṽ)

R1(q, v) = r (68)

For convenience let α̂1 = α̂1(q, r). In light of relations (29) and (30), we conclude that:

min
v∈C2[(1+ε)α̂1,ṽ]

1

1 + δ
R2(q, v) ≥ min

v∈C1(α̂1,ṽ)
R1(q, v) = r (69)

Hence:
min

v∈C2[(1+ε)α̂1,ṽ]
R2(q, v) ≥ (1 + δ)r (70)

So, referring to eqs.(2) and (3), we conclude that the robustness of decision maker-2, for critical
reward (1 + δ)r, is no less than (1 + ε)α̂1:

(1 + ε)α̂1(q, r) ≤ α̂2[q, (1 + δ)r] (71)

Also, by the gambler’s theorem:
α̂2[q, (1 + δ)r] ≤ α̂2(q, r) (72)

with strict inequality if δ > 0. The last two relations complete the proof of relation (31).
Proof of Corollary 3/3. Let α̂1 denote the robustness for decision maker-1 using reward

function R1, and let α̂∗
1 denote his robustness with reward function R∗

1. By lemma 3:

min
v∈C1(α̂1(q,r),ṽ)

R1 = r (73)

By theorem 3:
α̂1(q, r) ≤ α̂2(q, r) (74)

so:
min

v∈C1(α̂2,ṽ)
R1 ≤ min

v∈C1(α̂1,ṽ)
R1 (75)

Let ∆ denote the excess of the righthand over the lefthand side of (75), which is finite since α̂1 exists.
Now choose decision maker-1’s new reward function R∗

1 so that:

R∗
1 > ∆+R1 (76)
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Figure 7: Illustration for proof of theorem 4.

Then:
min

v∈C1(α̂2,ṽ)
R∗

1 > ∆+ min
v∈C1(α̂2,ṽ)

R1 = r (77)

So, we conclude that decision maker-1’s new robustness at critical reward r is greater than α̂2:

α̂∗
1(q, r) > α̂2(q, r) (78)

which completes the proof.
Proof of theorem 4. (See fig. 7). Since the maxima of the robustness functions are uncon-

strained, they occur when the first derivatives of α̂i vanish. So, using eq.(43), q̂1(r) is the solution
for q of the following N relations:

0 =
∂ϕ

∂qn
α̂2 + ϕ

∂α̂2

∂qn
, n = 1, . . . , N (79)

Since α̂2 and ϕ are both positive, the N expressions on the right vanish (producing an extremum
for α̂1(q, r)) only if ∂ϕ/∂qn and ∂α̂2/∂qn differ in sign or both vanish. Since α̂2(q, r) is uni-modal
in qn for this value of r, ∂α̂2/∂qn is positive for values of qn less than q̂2,n, and ∂α̂2/∂qn is negative
for values of q greater than q̂2,n. If ∂ϕ/∂qn is negative at q̂1,n(r) then ∂α̂2/∂qn must be positive at
q̂1,n(r), implying that q̂1,n is to the left of q̂2,n. Likewise, if ∂ϕ/∂qn is positive at q̂1,n(r) then ∂α̂2/∂qn
must be negative at q̂1,n(r), implying that q̂1,n is to the right of q̂2,n. This concludes the proof.

Proof of Corollary 1/4. Since ϕ = α̂1/α̂2 and since both robustness functions are strictly
positive, one can readily show that the righthand relation (44) can be expressed differently:

∂ϕ(q)

∂qn

∣∣∣∣
q=q̂1(r)

<
=
>

0 if and only if
∂ ln α̂1(q, r)

∂qn

∣∣∣∣
q=q̂1(r)

<
=
>

∂ ln α̂2(q, r)

∂qn

∣∣∣∣
q=q̂1(r)

(80)

We note that both derivatives are evaluated at the optimal action of decision maker-1. In other
words, relation (44) in theorem 4 becomes:

q̂1,n(r)
<
=
>

q̂2,n(r) if and only if
∂ ln α̂1(q, r)

∂qn

∣∣∣∣
q=q̂1(r)

<
=
>

∂ ln α̂2(q, r)

∂qn

∣∣∣∣
q=q̂1(r)

(81)

But, from the symmetry of the robustness functions, a similar argument leads to:

q̂1,n(r)
<
=
>

q̂2,n(r) if and only if
∂ ln α̂2(q, r)

∂qn

∣∣∣∣
q=q̂2(r)

>
=
<

∂ ln α̂1(q, r)

∂qn

∣∣∣∣
q=q̂2(r)

(82)
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Since the robustness functions achieve unconstrained maxima on Q we see that:

0 =
∂ ln α̂2(q, r)

∂qn

∣∣∣∣
q=q̂2(r)

=
∂ ln α̂1(q, r)

∂qn

∣∣∣∣
q=q̂1(r)

(83)

which completes the proof.
Proof of Corollary 2/4. Denote ∆α̂ = α̂2 − α̂1. From eq.(43) we have:

∂∆α̂

∂qn
=
∂α̂2

∂qn
(1− ϕ)− α̂2

∂ϕ

∂qn
(84)

α̂2 is positive by supposition, and 1− ϕ is positive because decision maker-2 has greater robust risk
fondness than decision maker-1. When evaluated at q̂1(r), the two derivatives on the righthand side
of eq.(84) are either both zero or they are of opposite sign, as explained in the proof of theorem 4
in connection with eq.(79). Consequently, the righthand side of eq.(84) is positive if and only if
∂ϕ/∂qn is negative, and negative if and only if ∂ϕ/∂qn is positive. Hence we see that ∂∆α̂/∂qn is
positive, zero, or negative when ∂ϕ/∂qn is negative, zero, or positive, respectively. The assertion of
the corollary now results from theorem 4.
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